This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279035 #31 Dec 11 2016 20:41:42 %S A279035 1,2,4,9,9,9,8,19,9,8,17,27,27,27,28,17,26,35,45,45,46,37,25,44,53,65, %T A279035 42,72,74,52,70,90,92,74,53,62,72,70,93,61,81,80,89,100,91,80,91,79, %U A279035 99,99,99,98,107,117,118,106,130,86,123,155,137,117,118,105,136 %N A279035 Left-concatenate zeros to 2^(n-1) such that it has n digits. In the regular array formed by listing the found powers, a(n) is the sum of (nonzero) digits in column n. %C A279035 After carries, this is the decimal expansion of Sum_{i>=0} 0.2^i = 1.25. For n > 2, the 10^0's digit of a(n) + the 10^1's digit of a(n+1) + ... + the 10^m's digit of a(n+m) = 9 for some finite m. %C A279035 Conjecture: a(n) ~ c*n where c ~= 1.93. %C A279035 Conjecture: lim_{n->infinity} a(n)/n = (9/2)*log_5(2) = %C A279035 1.93804... - _Jon E. Schoenfield_, Dec 09 2016 %H A279035 Robert G. Wilson v, <a href="/A279035/b279035.txt">Table of n, a(n) for n = 1..10000</a> %e A279035 1 %e A279035 .2 %e A279035 . 4 %e A279035 . .8 %e A279035 . .16 %e A279035 . . 32 %e A279035 . . .64 %e A279035 . . .128 %e A279035 . . . 256 %e A279035 . . . .512 %e A279035 . . . .1024 %e A279035 The sum of digits of the first column is 1. Therefore, a(1) = 1. %e A279035 The sum of digits in column 4 is 8 + 1 = 9. Therefore, a(4) = 9. %e A279035 With the powers of 2 listed above, we can find n up to n = 7. For n > 8, some digits from 2^m compose a(n) for m > 10. %t A279035 f[n_, b_] := Block[{k = n}, While[k < n + Floor[ k*Log10[b]], k++]; Plus @@ Mod[ Quotient[ Table[ b^j*10^(k - j), {j, n -1, k}], 10^(k - n +1)], 10]]; Table[f[n, 2], {n, 65}] %t A279035 (* _Robert G. Wilson v_, Dec 03 2016 *) %Y A279035 Cf. A000079, A016134. %K A279035 nonn,base %O A279035 1,2 %A A279035 _David A. Corneth_, Dec 03 2016