This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279038 #20 Jun 01 2021 08:05:26 %S A279038 1,1,1,1,2,3,1,6,8,3,6,1,24,30,20,20,15,10,1,120,144,90,90,40,120,40, %T A279038 15,45,15,1,720,840,504,504,420,630,210,280,210,420,70,105,105,21,1, %U A279038 5040,5760,3360,3360,2688,4032,1344,1260,3360,1260,2520,420,1120,1120,1680,1120,112,105,420,210,28,1 %N A279038 Triangle of multinomial coefficients read by rows (ordered by decreasing size of the greatest part). %C A279038 The ordering of integer partitions used in this version is also called: %C A279038 - canonical ordering %C A279038 - graded reverse lexicographic ordering %C A279038 - magma (software) ordering %C A279038 by opposition to the ordering used by Abramowitz and Stegun. %H A279038 Alois P. Heinz, <a href="/A279038/b279038.txt">Rows n = 0..28, flattened</a> %e A279038 First rows are: %e A279038 1 %e A279038 1 %e A279038 1 1 %e A279038 2 3 1 %e A279038 6 8 3 6 1 %e A279038 24 30 20 20 15 10 1 %e A279038 120 144 90 90 40 120 40 15 45 15 1 %e A279038 720 840 504 504 420 630 210 280 210 420 70 105 105 21 1 %e A279038 ... %p A279038 b:= proc(n, i) option remember; `if`(n=0, [1], %p A279038 `if`(i<1, [], [seq(map(x-> x*i^j*j!, %p A279038 b(n-i*j, i-1))[], j=[iquo(n, i)-t$t=0..n/i])])) %p A279038 end: %p A279038 T:= n-> map(x-> n!/x, b(n$2))[]: %p A279038 seq(T(n), n=0..10); # _Alois P. Heinz_, Dec 04 2016 %t A279038 Flatten[Table[ %t A279038 Map[n!/Times @@ ((First[#]^Length[#]*Factorial[Length[#]]) & /@ %t A279038 Split[#]) &, IntegerPartitions[n]], {n, 1, 8}]] %t A279038 (* Second program: *) %t A279038 b[n_, i_] := b[n, i] = If[n == 0, {1}, %t A279038 If[i < 1, {}, Flatten@Table[#*i^j*j!& /@ %t A279038 b[n - i*j, i - 1], {j, Quotient[n, i] - Range[0, n/i]}]]]; %t A279038 T[n_] := n!/#& /@ b[n, n]; %t A279038 T /@ Range[0, 10] // Flatten (* _Jean-François Alcover_, Jun 01 2021, after _Alois P. Heinz_ *) %Y A279038 Cf. A000041 (number of partitions of n, length of each row). %Y A279038 Cf. A128628 (triangle of partition lengths) %Y A279038 Cf. A036039 (a different ordering), A102189 (row reversed version of A036039). %Y A279038 Row sums give A000142. %K A279038 nonn,tabf,look,easy %O A279038 0,5 %A A279038 _David W. Wilson_ and _Olivier Gérard_, Dec 04 2016 %E A279038 One term for row n=0 prepended by _Alois P. Heinz_, Dec 04 2016