cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279038 Triangle of multinomial coefficients read by rows (ordered by decreasing size of the greatest part).

This page as a plain text file.
%I A279038 #20 Jun 01 2021 08:05:26
%S A279038 1,1,1,1,2,3,1,6,8,3,6,1,24,30,20,20,15,10,1,120,144,90,90,40,120,40,
%T A279038 15,45,15,1,720,840,504,504,420,630,210,280,210,420,70,105,105,21,1,
%U A279038 5040,5760,3360,3360,2688,4032,1344,1260,3360,1260,2520,420,1120,1120,1680,1120,112,105,420,210,28,1
%N A279038 Triangle of multinomial coefficients read by rows (ordered by decreasing size of the greatest part).
%C A279038 The ordering of integer partitions used in this version is also called:
%C A279038 - canonical ordering
%C A279038 - graded reverse lexicographic ordering
%C A279038 - magma (software) ordering
%C A279038 by opposition to the ordering used by Abramowitz and Stegun.
%H A279038 Alois P. Heinz, <a href="/A279038/b279038.txt">Rows n = 0..28, flattened</a>
%e A279038 First rows are:
%e A279038     1
%e A279038     1
%e A279038     1   1
%e A279038     2   3   1
%e A279038     6   8   3   6   1
%e A279038    24  30  20  20  15   10   1
%e A279038   120 144  90  90  40  120  40  15  45  15  1
%e A279038   720 840 504 504 420  630 210 280 210 420 70 105 105 21 1
%e A279038   ...
%p A279038 b:= proc(n, i) option remember; `if`(n=0, [1],
%p A279038       `if`(i<1, [], [seq(map(x-> x*i^j*j!,
%p A279038        b(n-i*j, i-1))[], j=[iquo(n, i)-t$t=0..n/i])]))
%p A279038     end:
%p A279038 T:= n-> map(x-> n!/x, b(n$2))[]:
%p A279038 seq(T(n), n=0..10);  # _Alois P. Heinz_, Dec 04 2016
%t A279038 Flatten[Table[
%t A279038   Map[n!/Times @@ ((First[#]^Length[#]*Factorial[Length[#]]) & /@
%t A279038         Split[#]) &, IntegerPartitions[n]], {n, 1, 8}]]
%t A279038 (* Second program: *)
%t A279038 b[n_, i_] := b[n, i] = If[n == 0, {1},
%t A279038      If[i < 1, {}, Flatten@Table[#*i^j*j!& /@
%t A279038      b[n - i*j, i - 1], {j, Quotient[n, i] - Range[0, n/i]}]]];
%t A279038 T[n_] := n!/#& /@ b[n, n];
%t A279038 T /@ Range[0, 10] // Flatten (* _Jean-François Alcover_, Jun 01 2021, after _Alois P. Heinz_ *)
%Y A279038 Cf. A000041 (number of partitions of n, length of each row).
%Y A279038 Cf. A128628 (triangle of partition lengths)
%Y A279038 Cf. A036039 (a different ordering), A102189 (row reversed version of A036039).
%Y A279038 Row sums give A000142.
%K A279038 nonn,tabf,look,easy
%O A279038 0,5
%A A279038 _David W. Wilson_ and _Olivier Gérard_, Dec 04 2016
%E A279038 One term for row n=0 prepended by _Alois P. Heinz_, Dec 04 2016