cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279052 Semiprimes whose binary and ternary representations are prime when read in decimal.

This page as a plain text file.
%I A279052 #27 Dec 05 2016 21:40:09
%S A279052 295,1189,2515,4399,4897,5137,7045,7261,7999,8065,9019,9637,10579,
%T A279052 10951,10963,11035,11233,12679,13315,13603,13849,16279,18295,20065,
%U A279052 20467,20497,23089,23419,23551,23983,26359,27007,27301,27787,29647,33127,33253,33763,34189,34411
%N A279052 Semiprimes whose binary and ternary representations are prime when read in decimal.
%H A279052 K. D. Bajpai and Charles R Greathouse IV, <a href="/A279052/b279052.txt">Table of n, a(n) for n = 1..10000</a> (first 4075 terms from K. D. Bajpai)
%e A279052 295 is in the sequence because 295 = 5*59 (semiprime), 295_10 = 100100111_2 = 101221_3, and both 100100111_10 and 101221_10 are prime.
%e A279052 1189 is in the sequence because 1189 = 29*41 (semiprime), and both its binary representation 10010100101 and its ternary representation 1122001, if read as decimal numbers, are prime.
%t A279052 Select[Range[50000], PrimeOmega[#] == 2 && PrimeQ[FromDigits[IntegerDigits[#, 2]]] && PrimeQ[FromDigits[IntegerDigits[#, 3]]] &]
%o A279052 (PARI) has(n,b)=isprime(fromdigits(digits(n,b),10))
%o A279052 list(lim)=my(v=List(),t); forprime(p=2,lim\2, forprime(q=2,min(lim\p,p), if(has(t=p*q,2) && has(t,3), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Dec 05 2016
%Y A279052 Subsequence of A001358.
%Y A279052 Cf. A000040, A007089, A036952, A065720, A236365, A236537.
%K A279052 nonn,base
%O A279052 1,1
%A A279052 _K. D. Bajpai_, Dec 05 2016