This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279077 #9 Mar 20 2022 18:26:30 %S A279077 0,1,2,3,4,5,6,8,10,12,15,18,22,26,31,37,44,52,61,72,85,100,117,137, %T A279077 160,187,219,256,299,349,408,477,557,650,759,886,1034,1207,1409,1644, %U A279077 1919,2239,2613,3049,3558,4152,4845,5653,6596,7696,8979,10476,12223,14261 %N A279077 Maximum starting value of X such that repeated replacement of X with X-ceiling(X/7) requires n steps to reach 0. %C A279077 Inspired by A278586. %C A279077 Limit_{n->oo} a(n)/(7/6)^n = 4.03710211215303193642791458111196922950551168987041... %F A279077 a(n) = floor(a(n-1)*7/6) + 1. %e A279077 10 -> 10-ceiling(10/7) = 8, %e A279077 8 -> 8-ceiling(8/7) = 6, %e A279077 6 -> 6-ceiling(6/7) = 5, %e A279077 5 -> 5-ceiling(5/7) = 4, %e A279077 4 -> 4-ceiling(4/7) = 3, %e A279077 3 -> 3-ceiling(3/7) = 2, %e A279077 2 -> 2-ceiling(2/7) = 1, %e A279077 1 -> 1-ceiling(1/7) = 0, %e A279077 so reaching 0 from 10 requires 8 steps; %e A279077 11 -> 11-ceiling(11/7) = 9, %e A279077 9 -> 9-ceiling(9/7) = 7, %e A279077 7 -> 7-ceiling(7/7) = 6, %e A279077 6 -> 6-ceiling(6/7) = 5, %e A279077 5 -> 5-ceiling(5/7) = 4, %e A279077 4 -> 4-ceiling(4/7) = 3, %e A279077 3 -> 3-ceiling(3/7) = 2, %e A279077 2 -> 2-ceiling(2/7) = 1, %e A279077 1 -> 1-ceiling(1/7) = 0, %e A279077 so reaching 0 from 11 (or more) requires 9 (or more) steps; %e A279077 thus, 10 is the largest starting value from which 0 can be reached in 8 steps, so a(8) = 10. %o A279077 (Magma) a:=[0]; aCurr:=0; for n in [1..53] do aCurr:=Floor(aCurr*7/6)+1; a[#a+1]:=aCurr; end for; a; %Y A279077 Cf. A278586. %Y A279077 See the following sequences for maximum starting value of X such that repeated replacement of X with X-ceiling(X/k) requires n steps to reach 0: A000225 (k=2), A006999 (k=3), A155167 (k=4, apparently; see Formula entry there), A279075 (k=5), A279076 (k=6), (this sequence) (k=7), A279078 (k=8), A279079 (k=9), A279080 (k=10). For each of these values of k, is the sequence the L-sieve transform of {k-1, 2k-1, 3k-1, ...}? %K A279077 nonn %O A279077 0,3 %A A279077 _Jon E. Schoenfield_, Dec 06 2016