This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279080 #20 Mar 20 2022 18:26:18 %S A279080 0,1,2,3,4,5,6,7,8,9,11,13,15,17,19,22,25,28,32,36,41,46,52,58,65,73, %T A279080 82,92,103,115,128,143,159,177,197,219,244,272,303,337,375,417,464, %U A279080 516,574,638,709,788,876,974,1083,1204,1338,1487,1653,1837,2042,2269 %N A279080 Maximum starting value of X such that repeated replacement of X with X-ceiling(X/10) requires n steps to reach 0. %C A279080 Inspired by A278586. %C A279080 Limit_{n->oo} a(n)/(10/9)^n = 5.60655601136196116133057876294687807265035051745268... %H A279080 Robert Israel, <a href="/A279080/b279080.txt">Table of n, a(n) for n = 0..10000</a> %F A279080 a(n) = floor(a(n-1)*10/9) + 1. %e A279080 13 -> 13-ceiling(13/10) = 11, %e A279080 11 -> 11-ceiling(11/10) = 9, %e A279080 9 -> 9-ceiling(9/10) = 8, %e A279080 8 -> 8-ceiling(8/10) = 7, %e A279080 ... %e A279080 1 -> 1-ceiling(1/10) = 0, %e A279080 so reaching 0 from 13 requires 11 steps; %e A279080 14 -> 14-ceiling(14/10) = 12, %e A279080 12 -> 12-ceiling(12/10) = 10, %e A279080 10 -> 10-ceiling(10/10) = 9, %e A279080 9 -> 9-ceiling(9/10) = 8, %e A279080 8 -> 8-ceiling(8/10) = 7, %e A279080 ... %e A279080 1 -> 1-ceiling(1/10) = 0, %e A279080 so reaching 0 from 14 (or more) requires 12 (or more) steps; %e A279080 thus, 13 is the largest starting value from which 0 can be reached in 11 steps, so a(11) = 13. %p A279080 H:= proc(y) local u,v; %p A279080 v:= -y-1 mod 9+1; %p A279080 (10*y+v)/9 %p A279080 end proc: %p A279080 A:= Array(0..100): %p A279080 A[0]:= 0: %p A279080 for i from 1 to 100 do A[i]:= H(A[i-1]) od: %p A279080 convert(A,list); # _Robert Israel_, Jun 23 2020 %t A279080 With[{s = Array[-1 + Length@ NestWhileList[# - Ceiling[#/10] &, #, # > 0 &] &, 2400, 0]}, Array[-1 + Position[s, #][[-1, 1]] &, Max@ s, 0]] (* _Michael De Vlieger_, Jun 23 2020 *) %o A279080 (Magma) a:=[0]; aCurr:=0; for n in [1..57] do aCurr:=Floor(aCurr*10/9)+1; a[#a+1]:=aCurr; end for; a; %Y A279080 Cf. A278586. %Y A279080 See the following sequences for maximum starting value of X such that repeated replacement of X with X-ceiling(X/k) requires n steps to reach 0: A000225 (k=2), A006999 (k=3), A155167 (k=4, apparently; see Formula entry there), A279075 (k=5), A279076 (k=6), A279077 (k=7), A279078 (k=8), A279079 (k=9), (this sequence) (k=10). For each of these values of k, is the sequence the L-sieve transform of {k-1, 2k-1, 3k-1, ...}? %K A279080 nonn %O A279080 0,3 %A A279080 _Jon E. Schoenfield_, Dec 06 2016