cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A279098 Numbers k such that prime(k) divides primorial(j) + 1 for exactly one integer j.

Original entry on oeis.org

1, 2, 4, 8, 11, 17, 18, 21, 25, 32, 34, 35, 39, 40, 42, 47, 48, 58, 63, 65, 66, 67, 69, 90, 91, 97, 105, 110, 122, 140, 144, 151, 152, 162, 166, 168, 173, 174, 175, 179, 180, 186, 205, 207, 208, 210, 211, 218, 233, 243, 249, 256, 261, 262, 297, 308, 316, 318
Offset: 1

Views

Author

Jon E. Schoenfield, Mar 24 2017

Keywords

Comments

As used here, "primorial(j)" refers to the product of the first j primes, i.e., A002110(j).
Primorial(j) + 1 is the j-th Euclid number, A006862(j).

Examples

			59 is not in this sequence because both primorial(7) + 1 = 510511 and primorial(17) + 1 = 1922760350154212639071 are divisible by prime(59) = 277.
		

Crossrefs

Subsequence of A279097 (which also includes numbers k such that prime(k) divides primorial(j) + 1 for more than one integer j).

Programs

  • Mathematica
    np[1]=1; np[n_] := Block[{c=0, p=Prime[n], trg, x=1}, trg = p-1; Do[x = Mod[x Prime[k], p]; If[trg == x, c++], {k, n-1}]; c]; Select[Range[262], np[#] == 1 &] (* Giovanni Resta, Mar 29 2017 *)

A279099 Numbers k such that prime(k) divides primorial(j) + 1 for exactly two integers j.

Original entry on oeis.org

59, 177, 221, 260, 285, 431, 476, 489, 625, 653, 686, 860, 957, 1320, 1334, 1734, 1987, 2140, 2215, 2854, 2991, 3051, 3341, 3455, 3535, 3591, 3645, 3695, 3798, 4020, 4032, 4079, 4612, 4614, 4856, 4904, 5019, 5234, 5263, 5842, 6178, 6184, 6491, 6639, 6745, 7151
Offset: 1

Views

Author

Jon E. Schoenfield, Mar 24 2017

Keywords

Comments

As used here, "primorial(j)" refers to the product of the first j primes, i.e., A002110(j).
Primorial(j) + 1 is the j-th Euclid number, A006862(j).

Examples

			59 is in this sequence because prime(59) = 277 divides primorial(j) + 1 for exactly two integers j: 7 and 17.
436 is not in this sequence because prime(436) = 3041 divides primorial(j) + 1 for exactly three integers j: 206, 263, and 409.
		

Crossrefs

Subsequence of A279097 (which includes all numbers k such that prime(k) divides primorial(j) + 1 for one or more integers j); cf. A279098 (exactly one integer j).

Programs

  • Mathematica
    np[1]=1; np[n_] := Block[{c=0, p=Prime[n], trg, x=1}, trg = p-1; Do[x = Mod[x Prime[k], p]; If[trg == x, c++], {k, n-1}]; c]; Select[Range[1000], np[#] == 2 &] (* Giovanni Resta, Mar 29 2017 *)

A283928 Numbers k such that prime(k) divides primorial(j) + 1 for exactly three integers j.

Original entry on oeis.org

436, 2753, 13396, 19960, 24293, 26157, 58492, 58723, 61935, 121992, 136592, 145803, 149027, 159752, 179811, 180776, 184575, 194499, 262321, 268645, 280911, 315198, 327876, 339951, 364307, 390394, 413010, 433626, 444744, 492661, 510412, 518156, 541925, 542177
Offset: 1

Views

Author

Jon E. Schoenfield, Mar 24 2017

Keywords

Comments

As used here, "primorial(j)" refers to the product of the first j primes, i.e., A002110(j).
Primorial(j) + 1 is the j-th Euclid number, A006862(j).

Examples

			436 is in this sequence because prime(436) = 3041 divides primorial(j) + 1 for exactly three integers j: 206, 263, and 409.
180707 is not in this sequence because prime(180707) = 2464853 divides primorial(j) + 1 for exactly five integers j: 75366, 79914, 139731, 139990, and 175013. - _Jon E. Schoenfield_, Mar 30 2017
		

Crossrefs

Subsequence of A279097 (which includes all numbers k such that prime(k) divides primorial(j) + 1 for one or more integers j); cf. A279098 (exactly one integer j), A279099 (exactly two).

Programs

  • Magma
    countReqd:=3; kMaxTest:=20000; P:=PrimesInInterval(2,NthPrime(kMaxTest)); itos:=IntegerToString; a:=[]; for k in [1..kMaxTest] do p:=P[k]; pMinus1:=p-1; primorialModp:=1; jSuccess:=[]; if primorialModp eq pMinus1 then jSuccess:=[1]; end if; for j in [1..k-1] do primorialModp:=(primorialModp*P[j]) mod p; if primorialModp eq pMinus1 then jSuccess[#jSuccess+1]:=j; end if; end for; if #jSuccess eq countReqd then a[#a+1]:=k; "a("*itos(#a)*") = " * itos(k) * "; successes at j =", jSuccess; end if; end for; a; // Jon E. Schoenfield, Mar 25 2017

Extensions

a(10)-a(34) from Jon E. Schoenfield, Apr 02 2017

A284754 a(n) is the smallest number k such that prime(k) divides primorial(j) + 1 for exactly n integers j.

Original entry on oeis.org

1, 59, 436, 995752, 180707
Offset: 1

Views

Author

Jon E. Schoenfield, Apr 01 2017

Keywords

Comments

As used here, "primorial(j)" refers to the product of the first j primes, i.e., A002110(j).
Primorial(j) + 1 is the j-th Euclid number, A006862(j).
a(n) > 10^7 for n > 5. - Giovanni Resta, Apr 03 2017

Examples

			a(1) = 1 because the first prime, prime(1) = 2, divides primorial(j) + 1 for exactly one integer j, namely, j = 0 (since primorial(0) = 1).
a(2) = 59 because prime(59) = 277 divides primorial(j) + 1 for exactly two integers j (i.e., 7 and 17), and 59 is the smallest integer for which this is the case.
a(3) = 436 because prime(436) = 3041 divides primorial(j) + 1 for exactly three integers j (i.e., 206, 263, and 409), and 436 is the smallest integer for which this is the case.
a(5) = 180707 because prime(180707) = 2464853 divides primorial(j) + 1 for exactly five integers j (i.e., 75366, 79914, 139731, 139990, and 175013), and 180707 is the smallest integer for which this is the case.
		

Crossrefs

Extensions

a(4) from Giovanni Resta, Apr 02 2017
Showing 1-4 of 4 results.