cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279098 Numbers k such that prime(k) divides primorial(j) + 1 for exactly one integer j.

Original entry on oeis.org

1, 2, 4, 8, 11, 17, 18, 21, 25, 32, 34, 35, 39, 40, 42, 47, 48, 58, 63, 65, 66, 67, 69, 90, 91, 97, 105, 110, 122, 140, 144, 151, 152, 162, 166, 168, 173, 174, 175, 179, 180, 186, 205, 207, 208, 210, 211, 218, 233, 243, 249, 256, 261, 262, 297, 308, 316, 318
Offset: 1

Views

Author

Jon E. Schoenfield, Mar 24 2017

Keywords

Comments

As used here, "primorial(j)" refers to the product of the first j primes, i.e., A002110(j).
Primorial(j) + 1 is the j-th Euclid number, A006862(j).

Examples

			59 is not in this sequence because both primorial(7) + 1 = 510511 and primorial(17) + 1 = 1922760350154212639071 are divisible by prime(59) = 277.
		

Crossrefs

Subsequence of A279097 (which also includes numbers k such that prime(k) divides primorial(j) + 1 for more than one integer j).

Programs

  • Mathematica
    np[1]=1; np[n_] := Block[{c=0, p=Prime[n], trg, x=1}, trg = p-1; Do[x = Mod[x Prime[k], p]; If[trg == x, c++], {k, n-1}]; c]; Select[Range[262], np[#] == 1 &] (* Giovanni Resta, Mar 29 2017 *)