A279099 Numbers k such that prime(k) divides primorial(j) + 1 for exactly two integers j.
59, 177, 221, 260, 285, 431, 476, 489, 625, 653, 686, 860, 957, 1320, 1334, 1734, 1987, 2140, 2215, 2854, 2991, 3051, 3341, 3455, 3535, 3591, 3645, 3695, 3798, 4020, 4032, 4079, 4612, 4614, 4856, 4904, 5019, 5234, 5263, 5842, 6178, 6184, 6491, 6639, 6745, 7151
Offset: 1
Keywords
Examples
59 is in this sequence because prime(59) = 277 divides primorial(j) + 1 for exactly two integers j: 7 and 17. 436 is not in this sequence because prime(436) = 3041 divides primorial(j) + 1 for exactly three integers j: 206, 263, and 409.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Mathematica
np[1]=1; np[n_] := Block[{c=0, p=Prime[n], trg, x=1}, trg = p-1; Do[x = Mod[x Prime[k], p]; If[trg == x, c++], {k, n-1}]; c]; Select[Range[1000], np[#] == 2 &] (* Giovanni Resta, Mar 29 2017 *)
Comments