cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279115 Number of non-equivalent ways to place 6 non-attacking kings on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 143, 7855, 153311, 1505465, 9729830, 47235703, 186615092, 630338668, 1882894541, 5092130575, 12686490993, 29498296651, 64664954532, 134715649055, 268438970166, 514318521438, 951646716171, 1706721390223, 2976056379875, 5058962536429, 8402677784738, 13663807273607
Offset: 1

Views

Author

Heinrich Ludwig, Dec 09 2016

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted, see A172158.

Examples

			There are 143 non-equivalent ways to place 6 non-attacking kings on a 5 X 5 board, e.g., this one:
   K...K
   .....
   K...K
   .....
   K...K
		

Crossrefs

Cf. A172158, A279111 (2 kings), A279112 (3 kings), A279113 (4 kings), A279114 (5 kings), A279116 (7 kings), A279117, A236679.

Programs

  • PARI
    concat(vector(4), Vec(x^5*(143 +6997*x +107325*x^2 +651585*x^3 +2086471*x^4 +3732434*x^5 +3669293*x^6 +1297859*x^7 -708745*x^8 -592136*x^9 +247421*x^10 +258649*x^11 -53671*x^12 -77714*x^13 +4451*x^14 +14969*x^15 +1018*x^16 -1741*x^17 -234*x^18 +106*x^19) / ((1 -x)^13*(1 +x)^7) + O(x^30))) \\ Colin Barker, Dec 09 2016

Formula

a(n) = (n^12 - 135*n^10 + 180*n^9 + 7465*n^8 - 18840*n^7 - 202468*n^6 + 749880*n^5 + 2446764*n^4 - 13439400*n^3 - 3570352*n^2 + 89413920*n - 107694720 + IF(MOD(n, 2) = 1, 122*n^6 - 1020*n^5 + 1955*n^4 + 840*n^3 + 5753*n^2 - 42840*n + 132975))/5760 for n>=5.
a(n) = 6*a(n-1) - 8*a(n-2) - 22*a(n-3) + 69*a(n-4) - 8*a(n-5) - 176*a(n-6) + 168*a(n-7) + 182*a(n-8) - 364*a(n-9) + 364*a(n-11) - 182*a(n-12) - 168*a(n-13) + 176*a(n-14) + 8*a(n-15) - 69*a(n-16) + 22*a(n-17) + 8*a(n-18) - 6*a(n-19) + a(n-20) for n>=25.
G.f.: x^5*(143 +6997*x +107325*x^2 +651585*x^3 +2086471*x^4 +3732434*x^5 +3669293*x^6 +1297859*x^7 -708745*x^8 -592136*x^9 +247421*x^10 +258649*x^11 -53671*x^12 -77714*x^13 +4451*x^14 +14969*x^15 +1018*x^16 -1741*x^17 -234*x^18 +106*x^19) / ((1 -x)^13*(1 +x)^7). - Colin Barker, Dec 09 2016