This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279125 #32 Jan 27 2022 21:27:41 %S A279125 0,0,1,0,2,3,4,0,3,2,5,1,6,7,8,0,7,6,9,5,10,11,12,4,13,14,15,16,17,18, %T A279125 19,0,11,10,16,9,14,13,20,12,21,22,23,24,25,26,27,1,28,29,30,31,32,33, %U A279125 34,35,36,37,38,39,40,41,42,0,18,17,24,15,22,21,35,9 %N A279125 Lexicographically earliest sequence such that, for any distinct i and j, a(i)=a(j) implies (i AND j)=0 (where AND stands for the bitwise AND operator). %C A279125 This sequence is similar to A279119 in the sense that here we check for common ones in binary representation and there we check for common prime factors. %C A279125 By analogy with A275152, this sequence can be seen as a way to tile the first quadrant with fixed disconnected 2-dimensional polyominoes: the (vertical) polyomino corresponding to n is shifted to the right as little as possible so as not to overlap a previous polyomino, and a(n) gives the corresponding number of steps to the right (see illustration in Links section). %H A279125 Rémy Sigrist, <a href="/A279125/b279125.txt">Table of n, a(n) for n = 1..10000</a> %H A279125 Rémy Sigrist, <a href="/A279125/a279125.jpg">Illustration of the first terms (by way of polyominos)</a> %H A279125 N. J. A. Sloane and Brady Haran, <a href="https://www.youtube.com/watch?v=j0o-pMIR8uk">Amazing Graphs III</a>, Numberphile video (2019). %F A279125 a(n)=0 iff n belongs to A000079. %F A279125 a(n)=1 iff n belongs to A164346. %p A279125 with(Bits): %p A279125 n:= 100: %p A279125 l:= []: %p A279125 g:=[seq(0, i = 0..n-1)]: %p A279125 for i from 1 to n by 1 %p A279125 do %p A279125 a:= 0; %p A279125 while (And(g[a + 1], i)) > 0 %p A279125 do %p A279125 a++; %p A279125 end do: %p A279125 g[a + 1] += i; %p A279125 l:= [op(l), a]; %p A279125 end do: %p A279125 print(l); # _Reza K Ghazi_, Dec 29 2021 %t A279125 n = 100; %t A279125 l = {}; %t A279125 g = ConstantArray[0, n]; %t A279125 For[i = 0, i < n, i++; a = 0; While[BitAnd[g[[a + 1]], i] > 0, a++]; %t A279125 g[[a + 1]] += i; %t A279125 l = Append[l, a]]; %t A279125 l (* _Reza K Ghazi_, Dec 29 2021 *) %o A279125 (PARI) g = vector(72); for (n=1, #g, a = 0; while (bitand(g[a+1],n)>0, a++); g[a+1] += n; print1 (a", ")) %o A279125 (Python) %o A279125 n = 100 %o A279125 g = n * [0] %o A279125 for i in range(1, n + 1): %o A279125 a = 0 %o A279125 while g[a] & i: %o A279125 a += 1 %o A279125 g[a] += i %o A279125 print(a, end=', ') # _Reza K Ghazi_, Dec 29 2021 %Y A279125 Cf. A000079, A164346, A275152, A279119. %K A279125 nonn,base,look %O A279125 1,5 %A A279125 _Rémy Sigrist_, Dec 06 2016