A279128 Number of n X 2 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
1, 0, 9, 34, 87, 194, 400, 790, 1511, 2830, 5213, 9484, 17080, 30508, 54117, 95434, 167443, 292486, 508912, 882402, 1525219, 2628886, 4519577, 7751888, 13267384, 22662360, 38639553, 65769394, 111771663, 189671306, 321421456, 543987118
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1. .0..1. .0..1. .0..1. .0..0. .0..0. .0..0. .0..1. .0..0. .0..0 ..0..0. .1..1. .0..0. .0..1. .1..1. .1..0. .1..0. .1..0. .0..1. .1..0 ..1..0. .0..1. .1..1. .1..1. .0..1. .0..1. .0..1. .1..0. .1..1. .1..0 ..0..1. .0..1. .1..0. .0..0. .0..1. .1..1. .0..0. .0..0. .0..0. .0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A279134.
Formula
Empirical: a(n) = 5*a(n-1) - 7*a(n-2) - 2*a(n-3) + 10*a(n-4) - 2*a(n-5) - 5*a(n-6) + a(n-7) + a(n-8) for n>9.
Empirical g.f.: x*(1 - 5*x + 16*x^2 - 9*x^3 - 30*x^4 + 17*x^5 + 22*x^6 - x^7 - 9*x^8) / ((1 - x)^2*(1 - x - x^2)^3). - Colin Barker, Feb 26 2018
Comments