cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A279128 Number of n X 2 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

1, 0, 9, 34, 87, 194, 400, 790, 1511, 2830, 5213, 9484, 17080, 30508, 54117, 95434, 167443, 292486, 508912, 882402, 1525219, 2628886, 4519577, 7751888, 13267384, 22662360, 38639553, 65769394, 111771663, 189671306, 321421456, 543987118
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 2 of A279134.

Examples

			Some solutions for n=4:
..0..1. .0..1. .0..1. .0..1. .0..0. .0..0. .0..0. .0..1. .0..0. .0..0
..0..0. .1..1. .0..0. .0..1. .1..1. .1..0. .1..0. .1..0. .0..1. .1..0
..1..0. .0..1. .1..1. .1..1. .0..1. .0..1. .0..1. .1..0. .1..1. .1..0
..0..1. .0..1. .1..0. .0..0. .0..1. .1..1. .0..0. .0..0. .0..0. .0..1
		

Crossrefs

Cf. A279134.

Formula

Empirical: a(n) = 5*a(n-1) - 7*a(n-2) - 2*a(n-3) + 10*a(n-4) - 2*a(n-5) - 5*a(n-6) + a(n-7) + a(n-8) for n>9.
Empirical g.f.: x*(1 - 5*x + 16*x^2 - 9*x^3 - 30*x^4 + 17*x^5 + 22*x^6 - x^7 - 9*x^8) / ((1 - x)^2*(1 - x - x^2)^3). - Colin Barker, Feb 26 2018

A279129 Number of nX3 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 9, 66, 256, 820, 2551, 7491, 21131, 57971, 155551, 409876, 1064002, 2727560, 6917391, 17381168, 43320628, 107203164, 263611545, 644549767, 1567944409, 3796630655, 9154650571, 21989697066, 52634342562, 125577952504, 298716701553
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 3 of A279134.

Examples

			Some solutions for n=4
..0..1..1. .0..1..0. .0..1..0. .0..1..1. .0..0..1. .0..0..1. .0..1..0
..0..1..0. .0..0..1. .0..1..0. .1..0..0. .1..1..1. .1..0..0. .0..1..0
..1..0..0. .1..0..1. .1..0..0. .1..0..1. .1..0..0. .0..1..1. .0..1..0
..0..1..0. .0..0..0. .0..1..1. .1..1..0. .0..1..1. .1..0..1. .1..0..1
		

Crossrefs

Cf. A279134.

Formula

Empirical: a(n) = 6*a(n-1) -11*a(n-2) +5*a(n-3) +a(n-5) +9*a(n-6) -6*a(n-7) +3*a(n-8) -5*a(n-9) -a(n-11) for n>17

A279130 Number of nX4 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

3, 34, 256, 1324, 6396, 30074, 129264, 535814, 2150797, 8418336, 32296969, 121849424, 453295302, 1666387390, 6063302940, 21865526486, 78234877789, 277985152886, 981636776095, 3447186735368, 12044802324840, 41894649008470
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 4 of A279134.

Examples

			Some solutions for n=4
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..0..0. .0..1..0..1
..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..0..0
..1..1..0..1. .1..0..1..0. .1..0..0..1. .1..0..0..0. .0..1..1..1
..0..1..0..1. .0..1..1..1. .0..0..1..0. .0..0..1..0. .1..0..1..0
		

Crossrefs

Cf. A279134.

Formula

Empirical: a(n) = 16*a(n-1) -108*a(n-2) +401*a(n-3) -893*a(n-4) +1179*a(n-5) -600*a(n-6) -1173*a(n-7) +3468*a(n-8) -5018*a(n-9) +6446*a(n-10) -8766*a(n-11) +8587*a(n-12) -1891*a(n-13) -12870*a(n-14) +29298*a(n-15) -31377*a(n-16) +26556*a(n-17) -29210*a(n-18) +21407*a(n-19) +1380*a(n-20) -39341*a(n-21) +76349*a(n-22) -59868*a(n-23) +31048*a(n-24) -37732*a(n-25) +23625*a(n-26) +13127*a(n-27) -35339*a(n-28) +40641*a(n-29) -26406*a(n-30) +5772*a(n-31) +6474*a(n-32) -9682*a(n-33) +6694*a(n-34) -2802*a(n-35) +369*a(n-36) +540*a(n-37) -513*a(n-38) +299*a(n-39) -116*a(n-40) +36*a(n-41) -7*a(n-42) +a(n-43) for n>50

A279131 Number of nX5 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

3, 87, 820, 6396, 47452, 316516, 2017028, 12376570, 73672888, 428568648, 2445310419, 13733337644, 76104228971, 416938845972, 2261749445562, 12163774256441, 64922115452637, 344182830696292, 1813720428133600
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 5 of A279134.

Examples

			Some solutions for n=4
..0..1..0..1..0. .0..0..1..0..1. .0..1..1..0..1. .0..1..0..1..0
..1..0..1..1..0. .1..0..1..0..1. .1..0..0..1..0. .1..1..0..0..1
..0..0..1..1..1. .0..1..0..1..0. .1..0..1..1..1. .0..0..1..1..0
..1..1..0..1..0. .1..1..0..1..0. .0..0..0..1..0. .0..1..1..0..1
		

Crossrefs

Cf. A279134.

Formula

Empirical recurrence of order 88 (see link above)

A279132 Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

9, 194, 2551, 30074, 316516, 3125600, 29410145, 266502710, 2346800921, 20197483932, 170598730850, 1418685012262, 11643287106767, 94486219877716, 759316584725697, 6050247921127698, 47847435523630798, 375876383561544262
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 6 of A279134.

Examples

			Some solutions for n=4
..0..1..1..0..1..0. .0..1..1..0..0..1. .0..1..0..1..1..0. .0..0..0..1..0..0
..1..0..0..1..0..1. .1..0..0..1..1..0. .1..0..0..1..0..0. .1..0..1..0..1..1
..1..1..0..0..1..0. .1..0..0..0..1..1. .0..0..1..0..0..1. .1..0..1..0..1..0
..1..0..1..0..1..1. .0..1..1..1..0..0. .1..1..0..1..1..0. .0..1..1..0..1..0
		

Crossrefs

Cf. A279134.

A279133 Number of nX7 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 400, 7491, 129264, 2017028, 29410145, 409061044, 5488392521, 71618045798, 913912909445, 11451034651712, 141307143171540, 1721381619036321, 20738815798941668, 247471563012643095, 2928344313826748362
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 7 of A279134.

Examples

			Some solutions for n=4
..0..1..0..1..1..0..1. .0..1..0..1..0..1..1. .0..0..1..0..0..1..0
..1..1..1..0..0..0..1. .1..0..1..0..0..1..0. .1..1..0..0..1..0..1
..0..0..0..1..1..1..0. .0..1..1..0..0..1..0. .0..0..1..1..0..1..0
..0..1..0..1..0..0..1. .0..1..0..1..1..0..1. .1..0..1..0..0..1..0
		

Crossrefs

Cf. A279134.
Showing 1-6 of 6 results.