A279152 Number of n X 2 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 0, 4, 12, 30, 72, 162, 356, 766, 1616, 3378, 7004, 14406, 29480, 60090, 122036, 247150, 499456, 1007458, 2029068, 4081686, 8202456, 16469642, 33046628, 66271166, 132836784, 266160818, 533127612, 1067587174, 2137374088, 4278378970
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1. .0..1. .0..1. .0..1. .0..0. .0..0. .0..0. .0..1. .0..0. .0..0 ..1..1. .1..0. .0..1. .0..1. .1..1. .1..1. .1..1. .1..0. .1..1. .1..1 ..0..0. .0..0. .1..1. .0..0. .1..0. .0..0. .0..1. .1..1. .0..1. .1..0 ..1..1. .1..1. .0..0. .1..1. .0..1. .1..0. .1..0. .0..0. .0..1. .1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A279158.
Formula
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 6*a(n-3) - 12*a(n-4) + 8*a(n-5) - 4*a(n-6) + 8*a(n-7).
Empirical g.f.: 2*x^3*(2 - 2*x + x^2 - 6*x^3) / ((1 - 2*x)*(1 - x - 2*x^3)^2). - Colin Barker, Feb 10 2019