A279153 Number of nX3 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
2, 4, 20, 72, 255, 874, 2903, 9336, 29578, 92528, 285992, 875912, 2662819, 8042606, 24156735, 72211820, 214959872, 637526372, 1884571600, 5554575752, 16328272725, 47884030342, 140118979793, 409205295972, 1192876666588, 3471548282192
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..1. .0..0..1. .0..1..1. .0..1..0. .0..1..0. .0..1..0. .0..1..1 ..1..1..0. .1..0..1. .0..1..0. .0..1..0. .1..0..1. .0..1..1. .1..0..0 ..0..0..0. .0..1..0. .0..1..0. .1..0..0. .1..0..0. .0..0..0. .0..1..0 ..1..1..1. .1..0..1. .0..1..0. .0..1..1. .1..0..1. .1..1..1. .0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A279158.
Formula
Empirical: a(n) = 8*a(n-1) -24*a(n-2) +44*a(n-3) -90*a(n-4) +158*a(n-5) -168*a(n-6) +208*a(n-7) -261*a(n-8) +128*a(n-9) -149*a(n-10) +188*a(n-11) -12*a(n-12) +162*a(n-13) -130*a(n-14) -56*a(n-15) -80*a(n-16) +31*a(n-18) +56*a(n-19) +4*a(n-20) -16*a(n-21) -4*a(n-22) for n>23
Comments