cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A279152 Number of n X 2 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 4, 12, 30, 72, 162, 356, 766, 1616, 3378, 7004, 14406, 29480, 60090, 122036, 247150, 499456, 1007458, 2029068, 4081686, 8202456, 16469642, 33046628, 66271166, 132836784, 266160818, 533127612, 1067587174, 2137374088, 4278378970
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Examples

			Some solutions for n=4:
..0..1. .0..1. .0..1. .0..1. .0..0. .0..0. .0..0. .0..1. .0..0. .0..0
..1..1. .1..0. .0..1. .0..1. .1..1. .1..1. .1..1. .1..0. .1..1. .1..1
..0..0. .0..0. .1..1. .0..0. .1..0. .0..0. .0..1. .1..1. .0..1. .1..0
..1..1. .1..1. .0..0. .1..1. .0..1. .1..0. .1..0. .0..0. .0..1. .1..0
		

Crossrefs

Column 2 of A279158.

Formula

Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + 6*a(n-3) - 12*a(n-4) + 8*a(n-5) - 4*a(n-6) + 8*a(n-7).
Empirical g.f.: 2*x^3*(2 - 2*x + x^2 - 6*x^3) / ((1 - 2*x)*(1 - x - 2*x^3)^2). - Colin Barker, Feb 10 2019

A279153 Number of nX3 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 4, 20, 72, 255, 874, 2903, 9336, 29578, 92528, 285992, 875912, 2662819, 8042606, 24156735, 72211820, 214959872, 637526372, 1884571600, 5554575752, 16328272725, 47884030342, 140118979793, 409205295972, 1192876666588, 3471548282192
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 3 of A279158.

Examples

			Some solutions for n=4
..0..0..1. .0..0..1. .0..1..1. .0..1..0. .0..1..0. .0..1..0. .0..1..1
..1..1..0. .1..0..1. .0..1..0. .0..1..0. .1..0..1. .0..1..1. .1..0..0
..0..0..0. .0..1..0. .0..1..0. .1..0..0. .1..0..0. .0..0..0. .0..1..0
..1..1..1. .1..0..1. .0..1..0. .0..1..1. .1..0..1. .1..1..1. .0..1..0
		

Crossrefs

Cf. A279158.

Formula

Empirical: a(n) = 8*a(n-1) -24*a(n-2) +44*a(n-3) -90*a(n-4) +158*a(n-5) -168*a(n-6) +208*a(n-7) -261*a(n-8) +128*a(n-9) -149*a(n-10) +188*a(n-11) -12*a(n-12) +162*a(n-13) -130*a(n-14) -56*a(n-15) -80*a(n-16) +31*a(n-18) +56*a(n-19) +4*a(n-20) -16*a(n-21) -4*a(n-22) for n>23

A279154 Number of nX4 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 12, 72, 428, 2294, 11932, 60304, 297092, 1443498, 6930508, 32917852, 155025096, 724982468, 3370079700, 15584464186, 71742003424, 328950577598, 1503015006696, 6845967619642, 31094637435220, 140875688981220, 636779907204164
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 4 of A279158.

Examples

			Some solutions for n=4
..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..0..1..0. .0..0..1..0
..1..0..0..1. .0..1..0..0. .0..1..1..0. .1..1..1..0. .1..1..0..0
..1..1..1..0. .0..1..1..1. .1..0..0..0. .1..0..0..1. .0..0..1..1
..0..0..1..0. .1..0..0..1. .0..1..1..1. .1..0..1..0. .1..0..1..0
		

Crossrefs

Cf. A279158.

Formula

Empirical: a(n) = 14*a(n-1) -79*a(n-2) +296*a(n-3) -1137*a(n-4) +3786*a(n-5) -9491*a(n-6) +25574*a(n-7) -66007*a(n-8) +125068*a(n-9) -286655*a(n-10) +644352*a(n-11) -935651*a(n-12) +2106274*a(n-13) -4254326*a(n-14) +4407958*a(n-15) -11660139*a(n-16) +20200812*a(n-17) -12942101*a(n-18) +52398124*a(n-19) -69889240*a(n-20) +21188756*a(n-21) -190043003*a(n-22) +177570770*a(n-23) -9931732*a(n-24) +525736690*a(n-25) -354049840*a(n-26) -26853854*a(n-27) -1062956470*a(n-28) +606320574*a(n-29) +18947687*a(n-30) +1546195654*a(n-31) -882316499*a(n-32) +192000088*a(n-33) -1655999570*a(n-34) +946806094*a(n-35) -559625950*a(n-36) +1454800834*a(n-37) -725310313*a(n-38) +650909536*a(n-39) -1073036990*a(n-40) +514311888*a(n-41) -448474953*a(n-42) +540383844*a(n-43) -298642984*a(n-44) +247525328*a(n-45) -191218312*a(n-46) +91813964*a(n-47) -69588676*a(n-48) +52628912*a(n-49) -21603676*a(n-50) +3806952*a(n-51) -2143540*a(n-52) +961488*a(n-53) -183280*a(n-54) -15808*a(n-55) -23104*a(n-56) for n>57

A279155 Number of n X 5 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 30, 255, 2294, 20104, 166552, 1331471, 10508084, 81594334, 624717186, 4739157622, 35661603332, 266406928267, 1978392492492, 14617489508922, 107516403089962, 787701900591720, 5750928990829306, 41856485102494388
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 5 of A279158.

Examples

			Some solutions for n=4
..0..0..1..0..1. .0..0..1..1..1. .0..0..1..1..0. .0..0..1..0..1
..1..0..1..1..0. .1..1..0..0..0. .1..1..0..1..0. .1..1..0..0..0
..1..0..0..1..0. .0..1..0..1..0. .0..1..0..1..1. .0..0..1..1..1
..1..0..1..1..0. .0..1..0..1..0. .1..0..1..0..0. .1..0..1..0..0
		

Crossrefs

Cf. A279158.

A279156 Number of nX6 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 72, 874, 11932, 166552, 2145788, 26724386, 330704288, 4027185426, 48341053840, 575447444416, 6798252425856, 79744778501470, 930090029926488, 10795234169830306, 124750828432766768, 1436120215880230752
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 6 of A279158.

Examples

			Some solutions for n=4
..0..1..0..1..0..1. .0..1..0..1..1..1. .0..1..0..1..1..0. .0..0..1..1..0..1
..1..0..0..0..0..1. .0..1..0..0..0..0. .0..1..1..0..0..1. .1..0..1..0..0..1
..0..1..1..1..1..0. .1..1..1..1..1..1. .1..0..0..1..0..1. .1..0..1..1..0..1
..0..1..0..0..0..1. .0..0..1..0..0..0. .0..1..1..0..0..1. .1..0..0..1..0..1
		

Crossrefs

Cf. A279158.

A279157 Number of nX7 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 162, 2903, 60304, 1331471, 26724386, 517476726, 10025433990, 191191601644, 3592564336954, 66997045991457, 1240581415395934, 22812879393607545, 417195888212408920, 7594010221332762302, 137646990170206088748
Offset: 1

Views

Author

R. H. Hardin, Dec 06 2016

Keywords

Comments

Column 7 of A279158.

Examples

			Some solutions for n=4
..0..1..0..0..1..0..1. .0..1..0..0..0..1..0. .0..1..1..0..1..0..1
..0..1..0..1..1..0..1. .0..1..1..1..1..0..1. .1..0..0..1..1..0..1
..0..1..0..0..1..0..0. .0..1..0..0..1..0..1. .1..0..0..0..0..1..0
..1..0..1..0..1..0..1. .0..1..1..1..0..1..0. .0..1..1..1..0..1..0
		

Crossrefs

Cf. A279158.
Showing 1-6 of 6 results.