A279162 Number of n X 2 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
1, 0, 0, 8, 24, 88, 284, 772, 2000, 5008, 12060, 28300, 65192, 147736, 330340, 730740, 1601744, 3483616, 7526252, 16167132, 34555192, 73534440, 155880628, 329312132, 693584736, 1456820784, 3052436156, 6381514348, 13314563144, 27728987832
Offset: 1
Keywords
Examples
All solutions for n=4: ..0..1. .0..0. .0..1. .0..0. .0..1. .0..0. .0..1. .0..0 ..0..0. .1..1. .0..0. .0..1. .1..1. .1..1. .1..1. .1..0 ..1..1. .0..1. .1..1. .1..1. .0..0. .1..0. .0..0. .1..1 ..0..1. .0..0. .1..0. .0..0. .0..1. .0..0. .1..0. .0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A279168.
Formula
Empirical: a(n) = 7*a(n-1) - 19*a(n-2) + 31*a(n-3) - 52*a(n-4) + 82*a(n-5) - 84*a(n-6) + 84*a(n-7) - 96*a(n-8) + 56*a(n-9) - 32*a(n-10) + 32*a(n-11).
Empirical g.f.: x*(1 - 7*x + 19*x^2 - 23*x^3 + 20*x^4 - 10*x^5 - 40*x^6 + 44*x^7 - 48*x^8 + 96*x^9) / ((1 - 2*x)^2*(1 - x - 2*x^3)^3). - Colin Barker, Feb 10 2019