A279163 Number of nX3 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 0, 16, 117, 483, 2001, 7709, 28139, 99519, 343156, 1158512, 3846322, 12594188, 40751991, 130532891, 414450312, 1305793262, 4086143226, 12709088120, 39314219923, 121018445801, 370868139707, 1131946765331, 3442082089719
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0. .0..0..1. .0..1..0. .0..1..1. .0..1..1. .0..1..0. .0..1..0 ..1..1..0. .1..1..1. .0..1..0. .1..0..0. .0..1..0. .0..0..1. .1..1..1 ..1..0..1. .0..0..0. .1..1..1. .1..0..0. .0..1..0. .1..1..1. .0..0..0 ..0..0..1. .1..0..1. .0..0..1. .0..1..1. .0..1..1. .0..0..0. .1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A279168.
Formula
Empirical: a(n) = 12*a(n-1) -60*a(n-2) +178*a(n-3) -423*a(n-4) +945*a(n-5) -1762*a(n-6) +2718*a(n-7) -4107*a(n-8) +5541*a(n-9) -6003*a(n-10) +6900*a(n-11) -7369*a(n-12) +5673*a(n-13) -6435*a(n-14) +6357*a(n-15) -3486*a(n-16) +5577*a(n-17) -3953*a(n-18) +453*a(n-19) -3432*a(n-20) +780*a(n-21) +357*a(n-22) +2541*a(n-23) +430*a(n-24) -354*a(n-25) -888*a(n-26) -583*a(n-27) -84*a(n-28) +354*a(n-29) +224*a(n-30) -36*a(n-31) -48*a(n-32) -8*a(n-33) for n>36
Comments