cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A279162 Number of n X 2 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

1, 0, 0, 8, 24, 88, 284, 772, 2000, 5008, 12060, 28300, 65192, 147736, 330340, 730740, 1601744, 3483616, 7526252, 16167132, 34555192, 73534440, 155880628, 329312132, 693584736, 1456820784, 3052436156, 6381514348, 13314563144, 27728987832
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2016

Keywords

Examples

			All solutions for n=4:
..0..1. .0..0. .0..1. .0..0. .0..1. .0..0. .0..1. .0..0
..0..0. .1..1. .0..0. .0..1. .1..1. .1..1. .1..1. .1..0
..1..1. .0..1. .1..1. .1..1. .0..0. .1..0. .0..0. .1..1
..0..1. .0..0. .1..0. .0..0. .0..1. .0..0. .1..0. .0..0
		

Crossrefs

Column 2 of A279168.

Formula

Empirical: a(n) = 7*a(n-1) - 19*a(n-2) + 31*a(n-3) - 52*a(n-4) + 82*a(n-5) - 84*a(n-6) + 84*a(n-7) - 96*a(n-8) + 56*a(n-9) - 32*a(n-10) + 32*a(n-11).
Empirical g.f.: x*(1 - 7*x + 19*x^2 - 23*x^3 + 20*x^4 - 10*x^5 - 40*x^6 + 44*x^7 - 48*x^8 + 96*x^9) / ((1 - 2*x)^2*(1 - x - 2*x^3)^3). - Colin Barker, Feb 10 2019

A279163 Number of nX3 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 0, 16, 117, 483, 2001, 7709, 28139, 99519, 343156, 1158512, 3846322, 12594188, 40751991, 130532891, 414450312, 1305793262, 4086143226, 12709088120, 39314219923, 121018445801, 370868139707, 1131946765331, 3442082089719
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2016

Keywords

Comments

Column 3 of A279168.

Examples

			Some solutions for n=4
..0..1..0. .0..0..1. .0..1..0. .0..1..1. .0..1..1. .0..1..0. .0..1..0
..1..1..0. .1..1..1. .0..1..0. .1..0..0. .0..1..0. .0..0..1. .1..1..1
..1..0..1. .0..0..0. .1..1..1. .1..0..0. .0..1..0. .1..1..1. .0..0..0
..0..0..1. .1..0..1. .0..0..1. .0..1..1. .0..1..1. .0..0..0. .1..0..1
		

Crossrefs

Cf. A279168.

Formula

Empirical: a(n) = 12*a(n-1) -60*a(n-2) +178*a(n-3) -423*a(n-4) +945*a(n-5) -1762*a(n-6) +2718*a(n-7) -4107*a(n-8) +5541*a(n-9) -6003*a(n-10) +6900*a(n-11) -7369*a(n-12) +5673*a(n-13) -6435*a(n-14) +6357*a(n-15) -3486*a(n-16) +5577*a(n-17) -3953*a(n-18) +453*a(n-19) -3432*a(n-20) +780*a(n-21) +357*a(n-22) +2541*a(n-23) +430*a(n-24) -354*a(n-25) -888*a(n-26) -583*a(n-27) -84*a(n-28) +354*a(n-29) +224*a(n-30) -36*a(n-31) -48*a(n-32) -8*a(n-33) for n>36

A279164 Number of nX4 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

3, 8, 117, 864, 5628, 34764, 203226, 1143396, 6219491, 33013384, 171939641, 880916518, 4451397177, 22233587926, 109941169416, 538893155258, 2621198787932, 12662917887190, 60802741447447, 290361255593144
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2016

Keywords

Comments

Column 4 of A279168.

Examples

			Some solutions for n=4
..0..0..0..1. .0..0..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..1..0..1. .1..1..1..1. .1..0..0..1. .1..1..0..1. .0..0..0..1
..0..1..1..0. .0..0..1..0. .0..1..1..0. .0..0..1..0. .1..1..0..1
..0..1..0..1. .1..0..1..0. .0..1..1..0. .1..0..0..1. .0..0..1..0
		

Crossrefs

Cf. A279168.

Formula

Empirical recurrence of order 84 (see link above)

A279165 Number of nX5 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

3, 24, 483, 5628, 57248, 557163, 5159514, 45915548, 396958758, 3354431037, 27818139968, 227109345763, 1829793702631, 14577379224104, 115006531796224, 899624259907987, 6984552550608837, 53866857503363854, 412968368588533755
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2016

Keywords

Comments

Column 5 of A279168.

Examples

			Some solutions for n=4
..0..1..0..0..1. .0..1..1..1..0. .0..1..0..1..0. .0..1..0..1..0
..0..0..1..0..1. .0..0..0..0..1. .0..1..1..0..1. .1..0..1..1..0
..1..1..0..1..0. .1..1..1..1..0. .1..0..1..0..1. .1..1..0..1..1
..0..1..0..1..0. .0..0..1..0..1. .0..0..1..0..0. .0..0..1..0..0
		

Crossrefs

Cf. A279168.

A279166 Number of nX6 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

9, 88, 2001, 34764, 557163, 8426362, 121098448, 1686053298, 22825771952, 302051174586, 3926950483003, 50292947670984, 635850396680521, 7951563133669828, 98499861578102570, 1210045057467722370
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2016

Keywords

Comments

Column 6 of A279168.

Examples

			Some solutions for n=4
..0..0..1..1..0..0. .0..1..0..0..1..0. .0..0..0..1..0..1. .0..1..0..1..0..0
..1..1..0..1..0..1. .1..0..1..1..0..1. .1..1..1..0..1..1. .0..0..0..1..0..1
..0..1..0..0..0..1. .0..1..1..0..1..0. .0..0..1..1..0..0. .1..1..1..1..1..0
..1..0..1..1..1..0. .0..0..1..0..1..0. .1..1..0..0..1..0. .0..0..0..0..1..0
		

Crossrefs

Cf. A279168.

A279167 Number of nX7 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 284, 7709, 203226, 5159514, 121098448, 2708250146, 58954576326, 1248383818884, 25842455526113, 526028318802380, 10553193022979559, 209056148689381340, 4097404879908777416, 79569078719501719249
Offset: 1

Views

Author

R. H. Hardin, Dec 07 2016

Keywords

Comments

Column 7 of A279168.

Examples

			Some solutions for n=3
..0..1..1..0..1..1..0. .0..1..0..0..1..0..1. .0..1..0..0..0..1..1
..1..1..0..0..0..1..0. .1..0..1..0..1..0..1. .1..0..1..1..1..0..0
..0..0..1..1..1..0..1. .1..0..1..1..1..0..1. .0..1..1..0..0..1..1
		

Crossrefs

Cf. A279168.
Showing 1-6 of 6 results.