This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279184 #25 Dec 15 2024 04:38:14 %S A279184 268,723,9718,9858,13498,15738,35898,60363,75168,75973,87208,88888, %T A279184 98198,126848,135368,141093,161268,221223,233788,301513,328358,330633, %U A279184 419148,507648,527928,543468,551238,556418,586018,725958,772508,964588,985728 %N A279184 Numbers k such that phi(6k) = phi(6k+2), where phi is Euler's totient function A000010. %H A279184 Amiram Eldar, <a href="/A279184/b279184.txt">Table of n, a(n) for n = 1..794</a> %H A279184 Dov Jarden, <a href="/A001602/a001602.pdf">Recurring Sequences</a>, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 67. %p A279184 select( k -> numtheory:-phi(6*k)=numtheory:-phi(6*k+2), [$1..10^6]); # _Robert Israel_, Dec 11 2016 %t A279184 a = {}; Do[If[EulerPhi[6 k] == EulerPhi[6 k + 2], AppendTo[a, k]], {k, 1000000}]; a (* _Vincenzo Librandi_, Dec 11 2016 *) %o A279184 (Magma) [n: n in [1..2*10^6] | EulerPhi(6*n) eq EulerPhi(6*n+2)]; // _Vincenzo Librandi_, Dec 11 2016 %o A279184 (PARI) isok(k) = eulerphi(6*k) == eulerphi(6*k+2); \\ _Michel Marcus_, Dec 11 2016 %Y A279184 Cf. A000010. %Y A279184 A279011 is the union of A279183 and A279184. %K A279184 nonn %O A279184 1,1 %A A279184 _N. J. A. Sloane_, Dec 10 2016 %E A279184 a(8)-a(33) from _Robert Israel_, Dec 11 2016