cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279187 Maximal entry in row c of A279185, where c = n-th composite number A002808(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 4, 2, 6, 2, 1, 1, 4, 1, 2, 2, 6, 2, 1, 2, 4, 2, 10, 1, 6, 4, 1, 2, 6, 4, 2, 6, 3, 1, 4, 2, 1, 2, 4, 1, 10, 2, 2, 6, 4, 6, 4, 2, 1, 18, 4, 2, 1, 6, 3, 4, 2, 2, 10, 4, 11, 6, 1, 6, 4, 4, 1, 2, 2, 12, 6, 4, 6, 2, 6, 10, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Dec 14 2016

Keywords

Comments

There are really two sequences that should be included if missing: the maximal entry in row c, and the LCM of the entries in row c.
a(n) and the LCM variant A256608(A002808(n)) are equal at least up to n<=1100. - R. J. Mathar, Dec 15 2016

Crossrefs

Cf. A002808, A256608 (lcm of entries in row n), A279185, A279186 (max entry in row n).

Programs

  • Maple
    A279187 := proc(n)
        A279186(A002808(n)) ;
    end proc :
    seq(A279187(n),n=1..180) ; # R. J. Mathar, Dec 15 2016
  • Mathematica
    T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]]; Composite[n_] := FixedPoint[n + PrimePi[#] + 1&, n + PrimePi[n] + 1];
    a[n_] := a[n] = With[{c = Composite[n]}, Table[T[c, k], {k, 0, c-1}] // Max ];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 86}] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)