A279187 Maximal entry in row c of A279185, where c = n-th composite number A002808(n).
1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 4, 2, 6, 2, 1, 1, 4, 1, 2, 2, 6, 2, 1, 2, 4, 2, 10, 1, 6, 4, 1, 2, 6, 4, 2, 6, 3, 1, 4, 2, 1, 2, 4, 1, 10, 2, 2, 6, 4, 6, 4, 2, 1, 18, 4, 2, 1, 6, 3, 4, 2, 2, 10, 4, 11, 6, 1, 6, 4, 4, 1, 2, 2, 12, 6, 4, 6, 2, 6, 10, 3, 2
Offset: 1
Keywords
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
- Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016.
Programs
-
Maple
A279187 := proc(n) A279186(A002808(n)) ; end proc : seq(A279187(n),n=1..180) ; # R. J. Mathar, Dec 15 2016
-
Mathematica
T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]]; Composite[n_] := FixedPoint[n + PrimePi[#] + 1&, n + PrimePi[n] + 1]; a[n_] := a[n] = With[{c = Composite[n]}, Table[T[c, k], {k, 0, c-1}] // Max ]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 86}] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
Comments