A279188 Maximal entry in row c of triangle in A279185, where c = prime(n)^2 = A001248(n).
1, 2, 4, 6, 20, 12, 8, 18, 110, 84, 20, 36, 20, 42, 253, 156, 812, 60, 330, 420, 18, 156, 820, 110, 48, 100, 408, 2756, 36, 84, 42, 780, 136, 1518, 1332, 60, 156, 162, 6806, 1204, 1958, 180, 3420, 96, 588, 990, 420, 1332, 3164, 684, 812, 2856, 24, 100
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016.
Programs
-
Maple
A279188 := proc(n) A279186(ithprime(n)^2) ; end proc : seq(A279188(n),n=1..80) ; # R. J. Mathar, Dec 15 2016
-
Mathematica
T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]]; a[n_] := a[n] = With[{c = Prime[n]^2}, Table[T[c, k], {k, 0, c-1}] // Max]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 54}] (* Jean-François Alcover, Nov 27 2017, after Robert Israel *)
Comments