cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279191 Primes p such that L(p^2) = (p-1)*L(p)/4, where L(i) = A279186(i).

This page as a plain text file.
%I A279191 #10 Oct 07 2018 08:02:29
%S A279191 53,61,97,113,149,193,349,389,461,769,773,857,941
%N A279191 Primes p such that L(p^2) = (p-1)*L(p)/4, where L(i) = A279186(i).
%H A279191 Haifeng Xu, <a href="http://arxiv.org/abs/1601.06509">The largest cycles consist by the quadratic residues and Fermat primes</a>, arXiv:1601.06509 [math.NT], 2016.
%t A279191 T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]];
%t A279191 L[n_] := L[n] = Table[T[n, k], {k, 0, n - 1}] // Max;
%t A279191 For[p = 2, p < 1000, p = NextPrime[p], If[L[p^2] == (p-1) L[p]/4, Print[p]]] (* _Jean-François Alcover_, Oct 07 2018, after _Robert Israel_ in A279186 *)
%Y A279191 Cf. A279185, A279186, A279187, A279188, A279189, A279190, A279192.
%K A279191 nonn,more
%O A279191 1,1
%A A279191 _N. J. A. Sloane_, Dec 14 2016
%E A279191 a(8)-a(13) from _Jean-François Alcover_, Oct 07 2018