A279192 Primes p such that L(p^2) = (p-1)*L(p)/6, where L(i) = A279186(i).
19, 31, 37, 43, 79, 199, 211, 223, 229, 277, 283, 367, 439, 463, 499, 523, 547, 619, 643, 692, 829, 859, 877, 907, 967, 997
Offset: 1
Links
- Haifeng Xu, The largest cycles consist by the quadratic residues and Fermat primes, arXiv:1601.06509 [math.NT], 2016.
Programs
-
Mathematica
T[n_, k_] := Module[{g, y, r}, If[k == 0, Return[1]]; y = n; g = GCD[k, y]; While[g > 1, y = y/g; g = GCD[k, y]]; If[y == 1, Return[1]]; r = MultiplicativeOrder[k, y]; r = r/2^IntegerExponent[r, 2]; If[r == 1, Return[1]]; MultiplicativeOrder[2, r]]; L[n_] := L[n] = Table[T[n, k], {k, 0, n - 1}] // Max; For[p = 2, p < 1000, p = NextPrime[p], If[L[p^2] == (p-1) L[p]/6, Print[p]]] (* Jean-François Alcover, Oct 07 2018, after Robert Israel in A279186 *)
Extensions
More terms from Jean-François Alcover, Oct 07 2018