cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279194 Numbers of the form {(11*h+p)*11^2k-1 | h,k in N and p in {1,3,4,5,9} } U {(11*h+q)*11^(2k+1)-1 | h,k in N and q in {2,6,7,8,10} }.

This page as a plain text file.
%I A279194 #21 Dec 17 2016 16:17:47
%S A279194 0,2,3,4,8,11,13,14,15,19,21,22,24,25,26,30,33,35,36,37,41,44,46,47,
%T A279194 48,52,55,57,58,59,63,65,66,68,69,70,74,76,77,79,80,81,85,87,88,90,91,
%U A279194 92,96,99,101,102,103,107,109,110,112,113,114,118,120,121,123,124,125,129
%N A279194 Numbers of the form {(11*h+p)*11^2k-1 | h,k in N and p in {1,3,4,5,9} } U {(11*h+q)*11^(2k+1)-1 | h,k in N and q in {2,6,7,8,10} }.
%C A279194 The sequence J related to the Apwenian power series F_{11}(x).
%H A279194 Ray Chandler, <a href="/A279194/b279194.txt">Table of n, a(n) for n = 1..10000</a>
%H A279194 Hao Fu, G.-N. Han, <a href="https://arxiv.org/abs/1601.04370">Computer assisted proof for Apwenian sequences related to Hankel determinants</a>, arXiv preprint arXiv:1601.04370 [math.NT], 2016. See sequence "J" in Section 2.3.
%H A279194 Guo-Niu Han, <a href="http://www-irma.u-strasbg.fr/~guoniu/papers/p93apwen/">The program Apwen.py</a>
%t A279194 isok[n_]:=Module[{ord=IntegerExponent[n+1,11],pq={{1,3,4,5,9},{2,6,7,8,10}}},MemberQ[pq[[Mod[ord,2]+1]],Mod[(n+1)/11^ord,11]]];Select[Range[0,131],isok] (* _Ray Chandler_, Dec 17 2016 *)
%Y A279194 Cf. A279000, A279001, A279195.
%K A279194 nonn
%O A279194 1,2
%A A279194 _N. J. A. Sloane_, Dec 15 2016
%E A279194 Definition (from p. 5, Definition 2.1 of the arXiv reference) provided by _Arie Groeneveld_, Dec 16 2016
%E A279194 More terms from _Ray Chandler_, Dec 17 2016