cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279195 Numbers of the form {(11*h+p)*11^(2k+1)-1 | h,k in N and p in {1,3,4,5,9} } U {(11*h+q)*11^2k-1 | h,k in N and q in {2,6,7,8,10} }.

This page as a plain text file.
%I A279195 #22 Dec 17 2016 16:18:11
%S A279195 1,5,6,7,9,10,12,16,17,18,20,23,27,28,29,31,32,34,38,39,40,42,43,45,
%T A279195 49,50,51,53,54,56,60,61,62,64,67,71,72,73,75,78,82,83,84,86,89,93,94,
%U A279195 95,97,98,100,104,105,106,108,111,115,116,117,119,122,126,127,128,130,131
%N A279195 Numbers of the form {(11*h+p)*11^(2k+1)-1 | h,k in N and p in {1,3,4,5,9} } U {(11*h+q)*11^2k-1 | h,k in N and q in {2,6,7,8,10} }.
%C A279195 The sequence K related to the Apwenian power series F_{11}(x).
%H A279195 Ray Chandler, <a href="/A279195/b279195.txt">Table of n, a(n) for n = 1..10000</a>
%H A279195 Hao Fu, G.-N. Han, <a href="https://arxiv.org/abs/1601.04370">Computer assisted proof for Apwenian sequences related to Hankel determinants</a>, arXiv preprint arXiv:1601.04370 [math.NT], 2016. See sequence "K" in Section 2.3.
%H A279195 Guo-Niu Han, <a href="http://www-irma.u-strasbg.fr/~guoniu/papers/p93apwen/">The program Apwen.py</a>
%t A279195 isok[n_]:=Module[{ord=IntegerExponent[n+1,11],pq={{2,6,7,8,10},{1,3,4,5,9}}},MemberQ[pq[[Mod[ord,2]+1]],Mod[(n+1)/11^ord,11]]];Select[Range[0,131],isok] (* _Ray Chandler_, Dec 17 2016 *)
%Y A279195 Cf. A279000, A279001, A279194.
%K A279195 nonn
%O A279195 1,2
%A A279195 _N. J. A. Sloane_, Dec 15 2016
%E A279195 Definition (from p. 5, Definition 2.1 of the arXiv reference) provided by _Arie Groeneveld_, Dec 16 2016
%E A279195 More terms from _Ray Chandler_, Dec 17 2016