A279206 Length of first run of 0's in binary representation of Catalan(n).
0, 0, 1, 1, 1, 1, 4, 1, 1, 2, 5, 2, 2, 1, 1, 2, 4, 1, 3, 1, 4, 1, 1, 2, 2, 3, 4, 2, 1, 3, 1, 2, 3, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 3, 1, 1, 2, 8, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 6, 1, 3, 2, 1, 1, 2, 6, 1, 1, 1, 2, 2, 2, 3, 6, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
A000108(13) = 742900_10 = A264663(13) = 10110101010111110100_2, so a(13) = 1.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
f:= proc(n) local L; uses ListTools; L:= [1,op(convert(binomial(2*n,n)/(n+1),base,2))]; L:= Reverse(L[2..-1]-L[1..-2]); Search(-1,L) - Search(1,L); end proc: map(f, [$0..100]); # Robert Israel, Dec 22 2016
-
Mathematica
Table[First[Map[Length, DeleteCases[Split@ IntegerDigits[CatalanNumber@ n, 2], w_ /; Times @@ w > 0]] /. {} -> {0}], {n, 0, 89}] (* Michael De Vlieger, Dec 22 2016 *)
Comments