This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279213 #19 Dec 16 2024 14:37:18 %S A279213 41,107,1613,2017,3229,4441,4643,5653,7673,9491,106103,116113,124121, %T A279213 130127,136133,170167,172169,182179,184181,196193,206203,212209, %U A279213 214211,220217,224221,230227,272269,274271,280277,302299,304301,320317,322319,326323,334331 %N A279213 Primes formed by concatenating n with n-3. %H A279213 Indranil Ghosh, <a href="/A279213/b279213.txt">Table of n, a(n) for n = 1..10000</a> %e A279213 For n = 16, n-3 = 13. Concatenating 16 and 13 gives 1613 which is a prime. So, 1613 is in the sequence. - _Indranil Ghosh_, Jan 23 2017 %t A279213 Select[Table[FromDigits[Join[Flatten[IntegerDigits[{n, n -3}]]]], {n, 400}], PrimeQ] %o A279213 (Magma) [m: n in [4..400 by 2] | IsPrime(m) where m is Seqint(Intseq(n-3) cat Intseq(n))]; %o A279213 (Python) %o A279213 from sympy import isprime %o A279213 i=4 %o A279213 j=1 %o A279213 while j<=10000: %o A279213 if isprime(int(str(i)+str(i-3)))==True: %o A279213 print(str(j)+" "+str(i)+str(i-3)) %o A279213 j+=1 %o A279213 i+=1 # _Indranil Ghosh_, Jan 23 2017 %o A279213 (PARI) terms(n) = my(i=0, k=3); while(i < n, my(x=eval(Str(k, k-3))); if(ispseudoprime(x), print1(x, ", "); i++); k++) %o A279213 /* Print initial 35 terms as follows: */ %o A279213 terms(35) \\ _Felix Fröhlich_, Jan 23 2017 %Y A279213 Cf. A052089, A104332. %K A279213 nonn,base %O A279213 1,1 %A A279213 _Vincenzo Librandi_, Dec 08 2016