This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279221 #9 Feb 16 2025 08:33:37 %S A279221 1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,5,5,5,5,5,5,7,7,7,7,7,7,9,9,9,9, %T A279221 9,9,12,12,12,12,13,13,16,16,16,16,17,17,20,20,20,20,21,21,25,25,25, %U A279221 25,27,27,31,31,31,31,33,33,37,37,37,37,39,39,44,44,44,45,48,48,53,53,54,55,58,58,63,63,64,65,68,68,74 %N A279221 Expansion of Product_{k>=1} 1/(1 - x^(k^2*(k+1)/2)). %C A279221 Number of partitions of n into nonzero pentagonal pyramidal numbers (A002411). %H A279221 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A279221 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A279221 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentagonalPyramidalNumber.html">Pentagonal Pyramidal Number</a> %H A279221 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a> %H A279221 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A279221 G.f.: Product_{k>=1} 1/(1 - x^(k^2*(k+1)/2)). %e A279221 a(7) = 2 because we have [6, 1] and [1, 1, 1, 1, 1, 1, 1]. %t A279221 nmax=90; CoefficientList[Series[Product[1/(1 - x^(k^2 (k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A279221 Cf. A002411, A068980, A279220, A279222, A279223, A279224. %K A279221 nonn %O A279221 0,7 %A A279221 _Ilya Gutkovskiy_, Dec 08 2016