This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279224 #8 May 08 2017 00:23:52 %S A279224 1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,4,4,4,5,5,5,5, %T A279224 5,5,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,9,9,10,10,10,11,11,11,12,12,12, %U A279224 13,13,13,14,14,14,15,16,16,17,17,17,18,18,18,19,20,20,21,21,21,22,22,22,23,24,24,26,26,26,27,27,27,28,29,29,31,32 %N A279224 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k-1)/2)). %C A279224 Number of partitions of n into nonzero octagonal pyramidal numbers (A002414). %H A279224 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] %H A279224 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A279224 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a> %H A279224 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A279224 G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)*(2*k-1)/2)). %e A279224 a(10) = 2 because we have [9, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. %t A279224 nmax=100; CoefficientList[Series[Product[1/(1 - x^(k (k + 1) (2 k - 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A279224 Cf. A002414, A068980, A279220, A279221, A279222, A279223. %K A279224 nonn %O A279224 0,10 %A A279224 _Ilya Gutkovskiy_, Dec 08 2016