This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279226 #9 Dec 09 2016 17:41:10 %S A279226 1,2,1,0,2,4,2,0,1,4,5,2,0,4,8,4,2,6,7,4,5,8,6,4,4,10,15,8,1,12,24,12, %T A279226 1,8,19,18,10,8,16,24,17,16,23,20,12,22,34,20,8,20,42,38,18,18,42,52, %U A279226 30,20,34,46,34,30,46,48,36,46,72,58,33,42,71,72,41 %N A279226 Expansion of Product_{k>=1} (1 + x^(k^2))^2. %H A279226 Vaclav Kotesovec, <a href="/A279226/b279226.txt">Table of n, a(n) for n = 0..10000</a> %F A279226 a(n) ~ exp(3 * Pi^(1/3) * ((sqrt(2)-1) * Zeta(3/2))^(2/3) * n^(1/3) / 2) * sqrt(2/3) * ((sqrt(2)-1) * Zeta(3/2) / Pi)^(1/3) / (4*n^(5/6)). - _Vaclav Kotesovec_, Dec 09 2016 %t A279226 nmax = 100; CoefficientList[Series[Product[(1 + x^(k^2))^2, {k, 1, nmax}], {x, 0, nmax}], x] %t A279226 nmax = 20; poly = ConstantArray[0, nmax^2 + 1]; poly[[1]] = 1; poly[[2]] = 2; poly[[3]] = 1; Do[Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, nmax^2, k^2, -1}];, {p, 1, 2}], {k, 2, nmax}]; poly (* _Vaclav Kotesovec_, Dec 09 2016 *) %Y A279226 Cf. A033461, A103265, A279225, A279227. %K A279226 nonn %O A279226 0,2 %A A279226 _Vaclav Kotesovec_, Dec 08 2016