cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279227 Expansion of Product_{k>=1} (1 + x^(k^2))^2/(1 - x^(k^2))^2.

This page as a plain text file.
%I A279227 #6 Dec 29 2016 17:17:44
%S A279227 1,4,8,12,20,36,56,76,104,152,216,284,364,484,648,828,1028,1300,1664,
%T A279227 2076,2532,3108,3848,4700,5640,6776,8200,9848,11660,13796,16424,19452,
%U A279227 22776,26612,31240,36572,42440,49092,56968,66044,76040,87236,100280,115244
%N A279227 Expansion of Product_{k>=1} (1 + x^(k^2))^2/(1 - x^(k^2))^2.
%H A279227 Vaclav Kotesovec, <a href="/A279227/b279227.txt">Table of n, a(n) for n = 0..10000</a>
%F A279227 a(n) ~ (4-sqrt(2)) * Zeta(3/2) * exp(3 * Pi^(1/3) * ((4-sqrt(2)) * Zeta(3/2))^(2/3) * n^(1/3) / 2^(4/3)) / (32 * sqrt(3) * Pi^2 * n^(3/2)). - _Vaclav Kotesovec_, Dec 29 2016
%t A279227 nmax = 100; CoefficientList[Series[Product[(1 + x^(k^2))^2/(1 - x^(k^2))^2, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A279227 Cf. A001156, A033461, A103265, A279225, A279226.
%K A279227 nonn
%O A279227 0,2
%A A279227 _Vaclav Kotesovec_, Dec 08 2016