This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279229 #45 Oct 28 2023 05:45:18 %S A279229 21,33,45,57,65,69,77,85,93,105,117,123,129,133,141,145,153,161,165, %T A279229 177,185,189,201,209,213,217,219,221,225,237,245,249,253,261,265,267, %U A279229 273,285,287,291,297,301,305,309,321,325,329,333,341,345,357 %N A279229 Odd orders n for which a complete dihedral Hamiltonian cycle system of the cocktail graph exists. %H A279229 M. Buratti and F. Merola, <a href="http://dx.doi.org/10.1002/jcd.21311">Dihedral Hamiltonian cycle systems of the Cocktail Party Graph</a>, J. Combin. Des. 21 (1) (2013) 1-23, Section 3. %p A279229 isA000961 := proc(n) %p A279229 local pf; %p A279229 if n = 1 then %p A279229 return true; %p A279229 end if; %p A279229 pf := ifactors(n)[2] ; %p A279229 if nops(pf) > 1 then %p A279229 false; %p A279229 else %p A279229 true; %p A279229 end if ; %p A279229 end proc: %p A279229 A023506 := proc(p) %p A279229 padic[ordp](p-1,2) ; %p A279229 end proc: %p A279229 isA279229 := proc(n) %p A279229 local ct2,p,l ; %p A279229 if type(n,'even') then %p A279229 false; %p A279229 elif isA000961(n) then %p A279229 false; %p A279229 else %p A279229 ct2 := 0 ; %p A279229 for pf in ifactors(n)[2] do %p A279229 l := A023506(op(1,pf)) ; %p A279229 ct2 := ct2+l*op(2,pf) ; %p A279229 end do: %p A279229 type(ct2,'even') ; %p A279229 end if; %p A279229 end proc: %p A279229 for n from 2 to 2000 do %p A279229 if isA279229(n) then %p A279229 printf("%d,",n); %p A279229 end if; %p A279229 end do: %t A279229 A023506[p_] := IntegerExponent[p - 1, 2]; %t A279229 isA279229[n_] := Module[{ct2, l}, Which[EvenQ[n], False, PrimePowerQ[n], False, True, ct2 = 0; Do[l = A023506[pf[[1]]]; ct2 = ct2 + l*pf[[2]], {pf, FactorInteger[n]}]; EvenQ[ct2]]]; %t A279229 Select[Range[2, 400], isA279229] (* _Jean-François Alcover_, Oct 28 2023, after _R. J. Mathar_'s program *) %K A279229 nonn,easy %O A279229 1,1 %A A279229 _R. J. Mathar_, Jan 04 2017