cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279260 Numbers which are cyclops palindromic in their binary reflected Gray code representation.

This page as a plain text file.
%I A279260 #42 May 22 2025 10:21:44
%S A279260 0,6,18,90,330,1386,5418,21930,87210,349866,1397418,5593770,22366890,
%T A279260 89483946,357903018,1431677610,5726579370,22906579626,91625794218,
%U A279260 366504225450,1466014804650,5864063412906,23456245263018,93824997829290,375299957762730,1501199898159786,6004799458421418
%N A279260 Numbers which are cyclops palindromic in their binary reflected Gray code representation.
%C A279260 Cyclops palindromic numbers in base 2 are numbers with middle bit 0, having equal number of 1's on both side of the 0. There is a single 0 bit in the middle and the total number of bits is odd. The middle '0' represents the eye of a cyclops.
%C A279260 a(n) mod 6 = 0.
%H A279260 Indranil Ghosh, <a href="/A279260/b279260.txt">Table of n, a(n) for n = 0..1000</a>
%H A279260 Indranil Ghosh, <a href="/A279260/a279260.txt">Proof of 6|{(-2*(1+((-2)^n)-(2^(2*n+1))))/3}</a>
%H A279260 Brady Haran and Simon Pampena, <a href="https://www.youtube.com/watch?v=HPfAnX5blO0">Glitch Primes and Cyclops Numbers</a>, Numberphile video, (2015)
%F A279260 a(n) = (-2*(1+((-2)^n)-(2^(2*n+1))))/3.
%e A279260 90 is in the sequence because the binary reflected Gray code representation of 90 is '1110111' which is a cyclops palindromic binary number.
%o A279260 (Python)
%o A279260 def a(n):
%o A279260     return (-2*(1+((-2)**n)-(2**(2*n+1))))/3
%o A279260 (PARI) a(n)=(-2*(1+((-2)^n)-(2^(2*n+1))))/3 \\ _Charles R Greathouse IV_, Jun 29 2018
%Y A279260 Cf. A014550, A129868, A134808, A138148.
%Y A279260 Partial sums of A071930.
%K A279260 nonn,base,easy
%O A279260 0,2
%A A279260 _Indranil Ghosh_, Jan 17 2017