A279262 Number of n X 2 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 4, 10, 20, 38, 68, 120, 208, 358, 612, 1042, 1768, 2992, 5052, 8514, 14324, 24062, 40364, 67624, 113160, 189150, 315844, 526890, 878160, 1462368, 2433268, 4045690, 6721748, 11160278, 18517652, 30706392, 50888128, 84287062, 139531812
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0. .0..0. .0..0. .0..1. .0..1. .0..1. .0..0. .0..0. .0..1. .0..1 ..1..1. .1..1. .1..0. .1..0. .0..1. .1..0. .0..1. .0..1. .0..0. .0..0 ..0..0. .1..0. .0..1. .0..1. .1..0. .0..0. .1..0. .1..0. .0..1. .1..1 ..1..0. .0..1. .1..0. .0..0. .0..0. .1..1. .1..0. .0..1. .1..0. .0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A279268.
Formula
Empirical: a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
Conjectures from Colin Barker, Feb 26 2018: (Start)
G.f.: 2*x^2*(1 + x)*(2 - 3*x) / ((1 - x)*(1 - x - x^2)^2).
a(n) = (1/25)*(2^(-n)*(-25*2^(2+n)+(50-6*sqrt(5))*(1-sqrt(5))^n + 50*(1+sqrt(5))^n + 6*sqrt(5)*(1+sqrt(5))^n - 5*(1-sqrt(5))^n*(1+sqrt(5))*n + 5*(-1+sqrt(5))*(1+sqrt(5))^n*n)).
(End)
Comments