cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A279262 Number of n X 2 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 4, 10, 20, 38, 68, 120, 208, 358, 612, 1042, 1768, 2992, 5052, 8514, 14324, 24062, 40364, 67624, 113160, 189150, 315844, 526890, 878160, 1462368, 2433268, 4045690, 6721748, 11160278, 18517652, 30706392, 50888128, 84287062, 139531812
Offset: 1

Views

Author

R. H. Hardin, Dec 08 2016

Keywords

Comments

Column 2 of A279268.

Examples

			Some solutions for n=4:
..0..0. .0..0. .0..0. .0..1. .0..1. .0..1. .0..0. .0..0. .0..1. .0..1
..1..1. .1..1. .1..0. .1..0. .0..1. .1..0. .0..1. .0..1. .0..0. .0..0
..0..0. .1..0. .0..1. .0..1. .1..0. .0..0. .1..0. .1..0. .0..1. .1..1
..1..0. .0..1. .1..0. .0..0. .0..0. .1..1. .1..0. .0..1. .1..0. .0..0
		

Crossrefs

Cf. A279268.

Formula

Empirical: a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) + a(n-5).
Conjectures from Colin Barker, Feb 26 2018: (Start)
G.f.: 2*x^2*(1 + x)*(2 - 3*x) / ((1 - x)*(1 - x - x^2)^2).
a(n) = (1/25)*(2^(-n)*(-25*2^(2+n)+(50-6*sqrt(5))*(1-sqrt(5))^n + 50*(1+sqrt(5))^n + 6*sqrt(5)*(1+sqrt(5))^n - 5*(1-sqrt(5))^n*(1+sqrt(5))*n + 5*(-1+sqrt(5))*(1+sqrt(5))^n*n)).
(End)

A279263 Number of n X 3 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 10, 29, 86, 240, 626, 1603, 4030, 9973, 24388, 59068, 141920, 338689, 803630, 1897359, 4460226, 10444904, 24376990, 56720671, 131619998, 304674313, 703690416, 1621976820, 3731637260, 8570604669, 19653441614, 45002040707
Offset: 1

Views

Author

R. H. Hardin, Dec 08 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0. .0..1..0. .0..1..1. .0..0..1. .0..1..1. .0..1..0. .0..0..1
..0..0..1. .1..0..1. .0..0..0. .0..1..0. .1..1..0. .1..0..0. .1..1..0
..1..1..0. .0..1..1. .0..1..1. .1..0..1. .0..0..1. .0..0..1. .0..0..0
..0..1..0. .1..0..0. .1..0..0. .0..1..0. .1..1..0. .1..1..0. .1..1..0
		

Crossrefs

Column 3 of A279268.

Formula

Empirical: a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) - 4*a(n-4) - a(n-6) for n>9.
Empirical g.f.: x*(2 + 2*x - 3*x^2 + 6*x^3 - 8*x^5 + 5*x^6 - 4*x^7 + 2*x^8) / (1 - 2*x - x^3)^2. - Colin Barker, Feb 10 2019

A279264 Number of nX4 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 20, 86, 400, 1592, 5888, 21882, 79112, 281754, 991292, 3452756, 11929580, 40936072, 139644508, 473965068, 1601601800, 5391122062, 18084715096, 60480149694, 201706042464, 671036424848, 2227380695220, 7378205313096
Offset: 1

Views

Author

R. H. Hardin, Dec 08 2016

Keywords

Comments

Column 4 of A279268.

Examples

			Some solutions for n=4
..0..1..1..0. .0..0..0..1. .0..1..0..0. .0..0..1..1. .0..0..1..1
..1..0..0..1. .1..0..1..0. .0..1..1..0. .1..1..0..0. .1..1..0..0
..0..1..1..0. .1..0..1..1. .1..0..0..1. .0..1..1..0. .0..1..0..1
..0..0..1..0. .0..1..0..0. .0..1..0..1. .1..0..0..1. .1..1..1..0
		

Crossrefs

Cf. A279268.

Formula

Empirical: a(n) = 10*a(n-1) -37*a(n-2) +62*a(n-3) -44*a(n-4) -16*a(n-5) +109*a(n-6) -148*a(n-7) +111*a(n-8) -290*a(n-9) +399*a(n-10) -144*a(n-11) -90*a(n-12) +622*a(n-13) -605*a(n-14) +60*a(n-15) -696*a(n-16) +776*a(n-17) -6*a(n-18) -230*a(n-19) +395*a(n-20) -290*a(n-21) +80*a(n-22) +4*a(n-23) -50*a(n-24) +28*a(n-25) -16*a(n-26) +4*a(n-27) -a(n-28) for n>31

A279265 Number of nX5 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 38, 240, 1592, 9042, 51568, 283450, 1526492, 8110769, 42557410, 221270081, 1141211474, 5846407067, 29780194244, 150943805823, 761780179606, 3829943970192, 19190669055102, 95869271616912, 477631625489180
Offset: 1

Views

Author

R. H. Hardin, Dec 08 2016

Keywords

Comments

Column 5 of A279268.

Examples

			Some solutions for n=4
..0..0..0..1..1. .0..1..0..1..1. .0..1..0..1..0. .0..1..0..0..1
..1..0..1..0..0. .1..0..1..0..1. .1..0..0..1..0. .1..0..1..1..1
..0..1..0..1..1. .0..0..1..1..0. .1..0..1..1..1. .0..1..1..0..0
..1..0..1..0..0. .1..1..0..1..0. .0..1..0..1..0. .1..0..0..1..1
		

Crossrefs

Cf. A279268.

Formula

Empirical: a(n) = 18*a(n-1) -133*a(n-2) +516*a(n-3) -1014*a(n-4) +88*a(n-5) +4608*a(n-6) -8364*a(n-7) -9733*a(n-8) +59824*a(n-9) -60755*a(n-10) -158718*a(n-11) +517639*a(n-12) -285032*a(n-13) -1154479*a(n-14) +2274544*a(n-15) +553945*a(n-16) -6902900*a(n-17) +7029598*a(n-18) +7184408*a(n-19) -23703614*a(n-20) +14268016*a(n-21) +20615435*a(n-22) -34536602*a(n-23) +2729363*a(n-24) +41857034*a(n-25) -23446347*a(n-26) -35485370*a(n-27) +43282185*a(n-28) -20257546*a(n-29) -45974459*a(n-30) -10797908*a(n-31) +28946430*a(n-32) +52002920*a(n-33) +15882763*a(n-34) +101221806*a(n-35) +118400316*a(n-36) +13029146*a(n-37) -115091113*a(n-38) -148192500*a(n-39) -221179112*a(n-40) -230136184*a(n-41) -47307082*a(n-42) +115675590*a(n-43) +219033475*a(n-44) +147567712*a(n-45) +40448454*a(n-46) -16088134*a(n-47) -59742983*a(n-48) -44175096*a(n-49) -17474920*a(n-50) +609788*a(n-51) +6992661*a(n-52) +4709828*a(n-53) +2409070*a(n-54) +295024*a(n-55) -360233*a(n-56) -247676*a(n-57) -81796*a(n-58) for n>69

A279266 Number of nX6 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 68, 626, 5888, 51568, 429716, 3490152, 27850092, 218952412, 1701805320, 13104577920, 100123194948, 759950374372, 5735676314072, 43078974827592, 322177736874528, 2400465164552300, 17825755365009616, 131979614009117780
Offset: 1

Views

Author

R. H. Hardin, Dec 08 2016

Keywords

Comments

Column 6 of A279268.

Examples

			Some solutions for n=4
..0..1..0..1..0..0. .0..1..1..0..1..1. .0..1..0..1..1..1. .0..1..0..1..0..1
..0..1..1..0..1..1. .1..0..0..1..0..0. .1..0..1..0..1..0. .0..1..1..0..0..1
..1..0..1..0..1..0. .1..0..1..0..1..1. .0..0..1..1..0..1. .1..0..1..0..1..0
..0..1..0..0..1..0. .0..0..0..1..0..0. .1..1..0..0..1..0. .0..0..0..1..0..1
		

Crossrefs

Cf. A279268.

A279267 Number of nX7 0..1 arrays with no element equal to a strict majority of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 120, 1603, 21882, 283450, 3490152, 42093113, 498160278, 5812405127, 67071788240, 766923320987, 8702848263928, 98122997204330, 1100209100745782, 12277125522368779, 136425808025932376, 1510393582783303438
Offset: 1

Views

Author

R. H. Hardin, Dec 08 2016

Keywords

Comments

Column 7 of A279268.

Examples

			Some solutions for n=4
..0..1..0..1..0..1..1. .0..1..0..0..1..0..1. .0..1..0..1..1..0..0
..1..0..1..1..0..0..0. .0..1..1..1..0..0..1. .1..0..1..0..0..1..1
..1..0..1..0..1..1..1. .1..0..0..1..0..1..0. .0..0..1..1..0..0..0
..0..1..0..1..0..1..0. .0..1..0..1..0..0..1. .1..1..0..0..1..0..1
		

Crossrefs

Cf. A279268.
Showing 1-6 of 6 results.