A279277 Composition of Lucas numbers A000032 with Fibonacci numbers A000045.
1, 4, 12, 37, 110, 327, 968, 2864, 8469, 25040, 74029, 218856, 647008, 1912753, 5654670, 16716883, 49420052, 146100276, 431915561, 1276869920, 3774804441, 11159436284, 32990587972, 97529916957, 288327225550, 852380393407, 2519888066928, 7449533000584, 22023018662909
Offset: 1
Examples
(x+x^2)/(1-3x) = x + (3+1)x^2+... so a(1) = 1 and a(2) = 4.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,1,-3,-1).
Programs
-
Mathematica
Rest@ CoefficientList[Series[(x + x^2 - x^3)/(1 - 3 x - x^2 + 3 x^3 + x^4), {x, 0, 24}], x] (* Michael De Vlieger, Dec 12 2016 *)
Formula
G.f. x*(1+x-x^2)/(1-3*x-x^2+3*x^3+x^4).
a(n) = 3*a(n-1)+a(n-2)-3*a(n-3)-a(n-4), a(1)=1, a(2)=4, a(3)=12, a(4)=46.
Comments