cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279277 Composition of Lucas numbers A000032 with Fibonacci numbers A000045.

Original entry on oeis.org

1, 4, 12, 37, 110, 327, 968, 2864, 8469, 25040, 74029, 218856, 647008, 1912753, 5654670, 16716883, 49420052, 146100276, 431915561, 1276869920, 3774804441, 11159436284, 32990587972, 97529916957, 288327225550, 852380393407, 2519888066928, 7449533000584, 22023018662909
Offset: 1

Views

Author

Oboifeng Dira, Dec 10 2016

Keywords

Comments

G(F(x)) where F(x) = x+x^2+2x^3+3x^4+... is the generating series of the Fibonacci numbers A000045 and G(x) = x+3x^2+4x^3+7x^4 +... is the generating series of the Lucas numbers A000032.

Examples

			(x+x^2)/(1-3x) = x + (3+1)x^2+... so a(1) = 1 and a(2) = 4.
		

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[(x + x^2 - x^3)/(1 - 3 x - x^2 + 3 x^3 + x^4), {x, 0, 24}], x] (* Michael De Vlieger, Dec 12 2016 *)

Formula

G.f. x*(1+x-x^2)/(1-3*x-x^2+3*x^3+x^4).
a(n) = 3*a(n-1)+a(n-2)-3*a(n-3)-a(n-4), a(1)=1, a(2)=4, a(3)=12, a(4)=46.