This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279279 #6 Feb 16 2025 08:33:37 %S A279279 1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0, %T A279279 1,1,0,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,2,2, %U A279279 0,0,0,0,1,2,1,0,0,0,0,1,1,1,1,0,0,0,0,1,2,1,0,1,1,0,2,2,0,1,1,0,1,1,0,0,0,0,1,1,0,1,1,1,2,1,0,1,1,1,1,1,2 %N A279279 Expansion of Product_{k>=1} (1 + x^(k*(2*k-1))). %C A279279 Number of partitions of n into distinct hexagonal numbers (A000384). %H A279279 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HexagonalNumber.html">Hexagonal Number</a> %H A279279 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a> %H A279279 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A279279 G.f.: Product_{k>=1} (1 + x^(k*(2*k-1))). %e A279279 a(67) = 2 because we have [66, 1] and [45, 15, 6, 1]. %t A279279 nmax = 120; CoefficientList[Series[Product[1 + x^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A279279 Cf. A000384, A024940, A033461, A218380, A278949, A279280, A279281. %K A279279 nonn %O A279279 0,67 %A A279279 _Ilya Gutkovskiy_, Dec 09 2016