This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279282 #10 Feb 16 2025 08:33:37 %S A279282 0,1,16,182,1720,14149,106944,760463,5160488,33756514,214369376, %T A279282 1328496947,8065970016,48125315989,282851349184,1640791635086, %U A279282 9409099218712,53408767286521,300417148670400,1676056809217283,9282172245277448,51062759750186170,279196558362482192,1518068927980989575 %N A279282 Self-composition of the cubes; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A000578. %H A279282 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A279282 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CubicNumber.html">Cubic Number</a> %H A279282 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (20,-158,640,-1553,2920,-4806,5700,-6820,5700,-4806,2920,-1553,640,-158,20,-1). %F A279282 G.f.: x*(1 - x)^4*(1 + 4*x + x^2)*(1 - 4*x + 29*x^2 - 84*x^3 + 152*x^4 - 84*x^5 + 29*x^6 - 4*x^7 + x^8)/((1 + x^2)^4*(1 - 5*x + x^2)^4). %t A279282 CoefficientList[Series[x (1 - x)^4 (1 + 4 x + x^2) (1 - 4 x + 29 x^2 - 84 x^3 + 152 x^4 - 84 x^5 + 29 x^6 - 4 x^7 + x^8)/((1 + x^2)^4 (1 - 5 x + x^2)^4), {x, 0, 23}], x] %t A279282 LinearRecurrence[{20,-158,640,-1553,2920,-4806,5700,-6820,5700,-4806,2920,-1553,640,-158,20,-1},{0,1,16,182,1720,14149,106944,760463,5160488,33756514,214369376,1328496947,8065970016,48125315989,282851349184,1640791635086},30] (* _Harvey P. Dale_, Sep 27 2024 *) %Y A279282 Cf. A000578, A030267, A030279. %K A279282 nonn,easy %O A279282 0,3 %A A279282 _Ilya Gutkovskiy_, Dec 09 2016