cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279341 a(1) = 0, a(2) = 1, for n > 2, if A079559(n) = 0, a(n) = 2*a(A256992(n)), otherwise a(n) = 1 + 2*a(A256992(n)).

This page as a plain text file.
%I A279341 #11 Dec 12 2016 09:12:42
%S A279341 0,1,3,7,2,6,15,5,14,13,31,4,12,30,11,29,10,27,63,28,26,9,25,62,61,23,
%T A279341 8,24,60,22,59,21,58,55,127,20,54,57,53,126,19,51,56,52,18,125,123,50,
%U A279341 47,17,124,122,49,121,46,45,119,16,48,120,44,118,43,117,42,111,255,116,110,41,109,254,115,107,40,108,114,253,39,106,103
%N A279341 a(1) = 0, a(2) = 1, for n > 2, if A079559(n) = 0, a(n) = 2*a(A256992(n)), otherwise a(n) = 1 + 2*a(A256992(n)).
%C A279341 Note the indexing: the domain starts from 1, while the range includes also zero.
%H A279341 Antti Karttunen, <a href="/A279341/b279341.txt">Table of n, a(n) for n = 1..8192</a>
%H A279341 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A279341 a(1) = 0, a(2) = 1, for n > 2, if A079559(n) = 0 [when n is a term of A055938], a(n) = 2*a(A256992(n)), otherwise a(n) = 1 + 2*a(A256992(n)).
%F A279341 As a composition of other permutations:
%F A279341 a(n) = A054429(A279343(n)).
%F A279341 a(n) = A279343(A279347(n)).
%F A279341 a(n) = A243071(A279338(n)).
%F A279341 Other identities. For all n >= 1:
%F A279341 A000120(a(n)) = A279345(n).
%F A279341 For all n >= 2, A070939(a(n)) = A256993(n).
%o A279341 (Scheme) (definec (A279341 n) (cond ((<= n 2) (- n 1)) ((zero? (A079559 n)) (* 2 (A279341 (A256992 n)))) (else (+ 1 (* 2 (A279341 (A256992 n)))))))
%Y A279341 Inverse: A279342.
%Y A279341 Cf. A000120, A070939, A079559, A256992, A256993, A279345.
%Y A279341 Related or similar permutations: A054429, A243071, A279338, A279343, A279347.
%K A279341 nonn
%O A279341 1,3
%A A279341 _Antti Karttunen_, Dec 10 2016