This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279373 #14 Nov 05 2019 06:56:05 %S A279373 1,2,8,9,12,18,24,36,40,56,60,72,80,84,180,225,240,252,288,360,396, %T A279373 441,448,450,504,560,600,625,672,720,792,880,882,936,1040,1056,1200, %U A279373 1248,1250,1260,1344,1408,1440,1620,1664,1680,1800,1980,2000,2016,2025,2160,2176,2240,2340,2640,2700,2772,3120,3168 %N A279373 Numbers n such that number of divisors of n divides n and at the same time the least number having exactly n divisors is divisible by n. %C A279373 Intersection of A033950 and A262981. %H A279373 Amiram Eldar, <a href="/A279373/b279373.txt">Table of n, a(n) for n = 1..267</a> %H A279373 A. Bundy, Simon Colton, T. Walsh, <a href="http://www.doc.ic.ac.uk/~sgc/papers/bundy_ecai98.pdf">HR - A system for Machine Discovery in Finite Algebras</a>, ECAI 1998. %H A279373 S. Colton, <a href="http://www.cs.uwaterloo.ca/journals/JIS/colton/joisol.html">Refactorable Numbers - A Machine Invention</a>, J. Integer Sequences, Vol. 2, 1999, #2. %H A279373 S. Colton, <a href="http://www.dai.ed.ac.uk/homes/simonco/research/hr/">HR - Automatic Theory Formation in Pure Mathematics</a> %H A279373 Robert E. Kennedy and Curtis N. Cooper, <a href="http://downloads.hindawi.com/journals/ijmms/1990/717323.pdf">Tau numbers, natural density and Hardy and Wright's Theorem 437</a>, International Journal of Mathematics and Mathematical Sciences, 13:2 (1990), pp. 383-386. %H A279373 Claudia Spiro, <a href="http://dx.doi.org/10.1016/0022-314X(85)90012-5">How often is the number of divisors of n a divisor of n?</a>, J. Number Theory 21 (1985), no. 1, 81-100. %H A279373 Vladimir Letsko, <a href="http://www-old.fizmat.vspu.ru/doku.php?id=marathon:problem_216">Mathematical Marathon, Problem 216</a> (in Russian) %e A279373 8 is in the sequence because 8 is divisible by tau(8) and at the same time 8 divides 24 which is the least number having exactly 8 divisors. %t A279373 Function[s, Select[TakeWhile[#, KeyExistsQ[s, #] &], Divisible[Lookup[s, #], #] &] &@ Select[Range@ 3000, Divisible[#, DivisorSigma[0, #]] &]]@ Map[First, KeySort@ PositionIndex@ Table[DivisorSigma[0, n], {n, 10^7}]] (* _Michael De Vlieger_, Dec 11 2016, Version 10 *) %Y A279373 Cf. A000005, A005179, A033950, A262981, A262983. %K A279373 nonn %O A279373 1,2 %A A279373 _Vladimir Letsko_, Dec 11 2016