This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279374 #12 Dec 12 2016 13:41:55 %S A279374 1,3,6,15,37,80,183,428,893,1944,4223,8691,18128,37529,75738,153460, %T A279374 308829,612006,1211097,2386016,4648229,9042678,17528035,33645928, %U A279374 64508161,123178953,233709589,442583046,834923483,1567271495,2935406996,5481361193,10191781534 %N A279374 Number of ways to choose an odd partition of each part of an odd partition of 2n+1. %C A279374 An odd partition is an integer partition of an odd number with an odd number of parts, all of which are odd. %H A279374 Alois P. Heinz, <a href="/A279374/b279374.txt">Table of n, a(n) for n = 0..4919</a> %H A279374 Gus Wiseman, <a href="/A279374/a279374.png">"Twice-odd partitions of n=9."</a> %e A279374 The a(3)=15 ways to choose an odd partition of each part of an odd partition of 7 are: %e A279374 ((7)), ((511)), ((331)), ((31111)), ((1111111)), ((5)(1)(1)), ((311)(1)(1)), %e A279374 ((11111)(1)(1)), ((3)(3)(1)), ((3)(111)(1)), ((111)(3)(1)), ((111)(111)(1)), %e A279374 ((3)(1)(1)(1)(1)), ((111)(1)(1)(1)(1)), ((1)(1)(1)(1)(1)(1)(1)). %p A279374 g:= proc(n) option remember; `if`(n=0, 1, add(add(d* %p A279374 [0, 2, 0, 1$4, 2, 0, 2, 1$4, 0, 2][1+irem(d, 16)], %p A279374 d=numtheory[divisors](j))*g(n-j), j=1..n)/n) %p A279374 end: %p A279374 b:= proc(n, i, t) option remember; %p A279374 `if`(n=0, t, `if`(i<1, 0, b(n, i-2, t)+ %p A279374 `if`(i>n, 0, b(n-i, i, 1-t)*g((i-1)/2)))) %p A279374 end: %p A279374 a:= n-> b(2*n+1$2, 0): %p A279374 seq(a(n), n=0..35); # _Alois P. Heinz_, Dec 12 2016 %t A279374 nn=20;Table[SeriesCoefficient[Product[1/(1-PartitionsQ[k]x^k),{k,1,2n-1,2}],{x,0,2n-1}],{n,nn}] %Y A279374 Cf. A000009 (strict partitions), A078408 (odd partitions), A063834, A271619, A279375. %K A279374 nonn %O A279374 0,2 %A A279374 _Gus Wiseman_, Dec 11 2016