cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279374 Number of ways to choose an odd partition of each part of an odd partition of 2n+1.

This page as a plain text file.
%I A279374 #12 Dec 12 2016 13:41:55
%S A279374 1,3,6,15,37,80,183,428,893,1944,4223,8691,18128,37529,75738,153460,
%T A279374 308829,612006,1211097,2386016,4648229,9042678,17528035,33645928,
%U A279374 64508161,123178953,233709589,442583046,834923483,1567271495,2935406996,5481361193,10191781534
%N A279374 Number of ways to choose an odd partition of each part of an odd partition of 2n+1.
%C A279374 An odd partition is an integer partition of an odd number with an odd number of parts, all of which are odd.
%H A279374 Alois P. Heinz, <a href="/A279374/b279374.txt">Table of n, a(n) for n = 0..4919</a>
%H A279374 Gus Wiseman, <a href="/A279374/a279374.png">"Twice-odd partitions of n=9."</a>
%e A279374 The a(3)=15 ways to choose an odd partition of each part of an odd partition of 7 are:
%e A279374 ((7)), ((511)), ((331)), ((31111)), ((1111111)), ((5)(1)(1)), ((311)(1)(1)),
%e A279374 ((11111)(1)(1)), ((3)(3)(1)), ((3)(111)(1)), ((111)(3)(1)), ((111)(111)(1)),
%e A279374 ((3)(1)(1)(1)(1)), ((111)(1)(1)(1)(1)), ((1)(1)(1)(1)(1)(1)(1)).
%p A279374 g:= proc(n) option remember; `if`(n=0, 1, add(add(d*
%p A279374       [0, 2, 0, 1$4, 2, 0, 2, 1$4, 0, 2][1+irem(d, 16)],
%p A279374       d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
%p A279374     end:
%p A279374 b:= proc(n, i, t) option remember;
%p A279374       `if`(n=0, t, `if`(i<1, 0, b(n, i-2, t)+
%p A279374       `if`(i>n, 0, b(n-i, i, 1-t)*g((i-1)/2))))
%p A279374     end:
%p A279374 a:= n-> b(2*n+1$2, 0):
%p A279374 seq(a(n), n=0..35);  # _Alois P. Heinz_, Dec 12 2016
%t A279374 nn=20;Table[SeriesCoefficient[Product[1/(1-PartitionsQ[k]x^k),{k,1,2n-1,2}],{x,0,2n-1}],{n,nn}]
%Y A279374 Cf. A000009 (strict partitions), A078408 (odd partitions), A063834, A271619, A279375.
%K A279374 nonn
%O A279374 0,2
%A A279374 _Gus Wiseman_, Dec 11 2016