This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279385 #43 Feb 05 2022 11:23:32 %S A279385 1,2,3,4,5,0,6,7,8,9,10,11,0,12,13,14,0,15,16,17,18,19,0,20,21,22,23, %T A279385 0,24,25,26,27,0,28,29,0,30,31,32,33,34,0,35,36,37,38,39,0,40,41,0,42, %U A279385 43,44,0,45,46,47,0,48,49,50,51,52,53,0,54,55,0,56,57,58,59,0,60,61,62,0,63,64,65,0,66,67,68,69,0 %N A279385 Irregular triangle read by rows in which row n lists the numbers k such that the largest Dyck path of the symmetric representation of sigma(k) contains the point (n,n), or row n is 0 if no such k exists. %C A279385 For more information about the mentioned Dyck paths see A237593. %e A279385 n Triangle begins: %e A279385 1 1; %e A279385 2 2, 3; %e A279385 3 4, 5; %e A279385 4 0; %e A279385 5 6, 7; %e A279385 6 8, %e A279385 7 9, 10, 11; %e A279385 8 0; %e A279385 9 12, 13, 14; %e A279385 10 0; %e A279385 11 15; %e A279385 12 16, 17; %e A279385 13 18, 19; %e A279385 14 0; %e A279385 15 20, 21, 22, 23; %e A279385 16 0; %e A279385 ... %t A279385 (* last computed value is dropped to avoid a potential under count of crossings *) %t A279385 a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k-(k+1)/2], {k, 1, Floor[-1/2+1/2 Sqrt[8n+1]]}] %t A279385 pathGroups[n_] := Module[{t}, t=Table[{}, a240542[n]]; Map[AppendTo[t[[a240542[#]]], #]&, Range[n]]; Map[If[t[[#]]=={}, t[[#]]={0}]&, Range[Length[t]]]; Most[t]] %t A279385 a279385[n_] := Flatten[pathGroups[n]] %t A279385 a279385[70] (* sequence *) %t A279385 a279385T[n_] := TableForm[pathGroups[n], TableHeadings->{Range[a240542[n]-1], None}] %t A279385 a279385T[24] (* display of irregular triangle - _Hartmut F. W. Hoft_, Feb 02 2022 *) %Y A279385 Positive terms give A000027. %Y A279385 Cf. A259179(n) is the number of positive terms in row n. %Y A279385 Cf. A000203, A196020, A236104, A235791, A237048, A237591, A237593, A240542, A244050, A245092, A259179, A262626, A279286. %K A279385 nonn,tabf %O A279385 1,2 %A A279385 _Omar E. Pol_, Dec 12 2016 %E A279385 More terms from _Omar E. Pol_, Jun 20 2018