cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279388 Irregular triangle read by rows: T(n,k) is the sum of the subparts in the k-th layer of the symmetric representation of sigma(n), if such a layer exists.

This page as a plain text file.
%I A279388 #49 Jun 13 2021 03:25:21
%S A279388 1,3,4,7,6,11,1,8,15,13,18,12,23,5,14,24,23,1,31,18,35,4,20,39,3,32,
%T A279388 36,24,47,13,31,42,40,55,1,30,59,13,32,63,48,54,45,3,71,20,38,60,56,
%U A279388 79,11,42,83,13,44,84,73,5,72,48,95,29,57,93,72,98,54,107,13,72,111,9,80,90,60,119,37,12
%N A279388 Irregular triangle read by rows: T(n,k) is the sum of the subparts in the k-th layer of the symmetric representation of sigma(n), if such a layer exists.
%H A279388 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%e A279388 Triangle begins (first 15 rows):
%e A279388   1;
%e A279388   3;
%e A279388   4;
%e A279388   7;
%e A279388   6;
%e A279388   11, 1;
%e A279388   8;
%e A279388   15;
%e A279388   13;
%e A279388   18;
%e A279388   12;
%e A279388   23, 5;
%e A279388   14;
%e A279388   24;
%e A279388   23, 1;
%e A279388   ...
%e A279388 For n = 12 we have that the 11th row of triangle A237593 is [6, 3, 1, 1, 1, 1, 3, 6] and the 12th row of the same triangle is [7, 2, 2, 1, 1, 2, 2, 7], so the diagram of the symmetric representation of sigma(12) = 28 is constructed as shown below in Figure 1:
%e A279388 .                          _                                    _
%e A279388 .                         | |                                  | |
%e A279388 .                         | |                                  | |
%e A279388 .                         | |                                  | |
%e A279388 .                         | |                                  | |
%e A279388 .                         | |                                  | |
%e A279388 .                    _ _ _| |                             _ _ _| |
%e A279388 .              28  _|    _ _|                       23  _|  _ _ _|
%e A279388 .                _|     |                             _|  _| |
%e A279388 .               |      _|                            |  _|  _|
%e A279388 .               |  _ _|                              | |_ _|
%e A279388 .    _ _ _ _ _ _| |                       _ _ _ _ _ _| |      5
%e A279388 .   |_ _ _ _ _ _ _|                      |_ _ _ _ _ _ _|
%e A279388 .
%e A279388 .   Figure 1. The symmetric            Figure 2. After the dissection
%e A279388 .   representation of sigma(12)        of the symmetric representation
%e A279388 .   has only one part which            of sigma(12) into layers of
%e A279388 .   contains 28 cells, so              width 1 we can see two "subparts"
%e A279388 .   A000203(12) = 28.                  that contain 23 and 5 cells
%e A279388 .                                      respectively, so the 12th row of
%e A279388 .                                      this triangle is [23, 5].
%e A279388 .
%e A279388 For n = 15 we have that the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) is constructed as shown below in Figure 3:
%e A279388 .                                _                                  _
%e A279388 .                               | |                                | |
%e A279388 .                               | |                                | |
%e A279388 .                               | |                                | |
%e A279388 .                               | |                                | |
%e A279388 .                           8   | |                            8   | |
%e A279388 .                               | |                                | |
%e A279388 .                               | |                                | |
%e A279388 .                          _ _ _|_|                           _ _ _|_|
%e A279388 .                   8  _ _| |                          7  _ _| |
%e A279388 .                     |    _|                            |  _ _|
%e A279388 .                    _|  _|                             _| |_|
%e A279388 .                   |_ _|                              |_ _|  1
%e A279388 .           8       |                          8       |
%e A279388 .    _ _ _ _ _ _ _ _|                   _ _ _ _ _ _ _ _|
%e A279388 .   |_ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _|
%e A279388 .
%e A279388 .   Figure 3. The symmetric            Figure 4. After the dissection
%e A279388 .   representation of sigma(15)        of the symmetric representation
%e A279388 .   has three parts of size 8,         of sigma(15) into layers of
%e A279388 .   whose sum is 8 + 8 + 8 = 24,       width 1 we can see four "subparts".
%e A279388 .   so A000203(15) = 24.               The first layer has three subparts
%e A279388 .                                      whose sum is 8 + 7 + 8 = 23. The
%e A279388 .                                      second layer has only one subpart
%e A279388 .                                      of size 1, so the 15th row of this
%e A279388 .                                      triangle is [23, 1].
%e A279388 .
%Y A279388 For the definition of "subparts" see A279387.
%Y A279388 For the triangle of subparts see A279391.
%Y A279388 Row sums give A000203.
%Y A279388 Row n has length A250068(n).
%Y A279388 Cf. A001227, A005279, A196020, A235791, A236104, A237048, A237270, A237591, A237593, A239657, A244050, A245092, A250070, A261699, A262626.
%K A279388 nonn,tabf
%O A279388 1,2
%A A279388 _Omar E. Pol_, Dec 12 2016