cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279394 Triangle read by rows, T(n,m) = sigma_{n-m}(m) for n >= 1, m = 1,2, ..., n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 7, 2, 1, 17, 28, 21, 6, 4, 1, 33, 82, 73, 26, 12, 2, 1, 65, 244, 273, 126, 50, 8, 4, 1, 129, 730, 1057, 626, 252, 50, 15, 3, 1, 257, 2188, 4161, 3126, 1394, 344, 85, 13, 4, 1, 513, 6562, 16513, 15626, 8052, 2402, 585, 91, 18, 2, 1, 1025, 19684, 65793, 78126, 47450, 16808, 4369, 757, 130, 12, 6
Offset: 1

Views

Author

Wolfdieter Lang, Jan 07 2017

Keywords

Comments

See A109974 (downward antidiagonals) for details and references. sigma_k(n) is the sum of the k-th power of the positive divisors of n.
This is the triangle read by rows obtained from the array sigma_k(n) for k >= 0, n >= 1, read by upward antidiagonals.
The row sums are A108639.

Examples

			The triangle T(n, m) begins:
n\m 1   2    3    4    5    6   7  8  9 10
1:  1
2:  1   2
3:  1   3    2
4:  1   5    4    3
5:  1   9   10    7    2
6:  1  17   28   21    6    4
7:  1  33   82   73   26   12   2
8:  1  65  244  273  126   50   8  4
9:  1 129  730 1057  626  252  50 15  3
10: 1 257 2188 4161 3126 1394 344 85 13  4
...
n = 11: 1 513 6562 16513 15626 8052 2402 585 91 18 2,
n = 12: 1 1025 19684 65793 78126 47450 16808 4369 757 130 12 6.
...
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> numtheory:-sigma[n-k](k):
    seq(seq(T(n,k), k=1..n), n=1..12); # Peter Luschny, Jan 07 2017
  • Mathematica
    Table[DivisorSigma[k, #] &[n - k + 1], {n, 0, 11}, {k, n, 0, -1}] (* Michael De Vlieger, Jan 09 2017 *)

Formula

T(n, m) = sigma_{n-m}(m), n >= 1, m = 1..n.