A279396 Triangle read by rows T(n, m) = sigma^*(n-m)(m), n >= 1, m = 1, 2, ..., n, with sigma^*(k)(n) given in a comment in A279395.
1, 1, 0, 1, 1, 2, 1, 3, 4, 1, 1, 7, 10, 5, 2, 1, 15, 28, 19, 6, 0, 1, 31, 82, 71, 26, 4, 2, 1, 63, 244, 271, 126, 30, 8, 2, 1, 127, 730, 1055, 626, 196, 50, 13, 3, 1, 255, 2188, 4159, 3126, 1230, 344, 83, 13, 0, 1, 511, 6562, 16511, 15626, 7564, 2402, 583, 91, 6, 2, 1, 1023, 19684, 65791, 78126, 45990, 16808, 4367, 757, 78, 12, 2
Offset: 1
Examples
The triangle T(n, m) begins: n\m 1 2 3 4 5 6 7 8 9 10 1: 1 2: 1 0 3: 1 1 2 4: 1 3 4 1 5: 1 7 10 5 2 6: 1 15 28 19 6 0 7: 1 31 82 71 26 4 2 8: 1 63 244 271 126 30 8 2 9: 1 127 730 1055 626 196 50 13 3 10: 1 255 2188 4159 3126 1230 344 83 13 0 ... n = 11: 1 511 6562 16511 15626 7564 2402 583 91 6 2, n = 12: 1 1023 19684 65791 78126 45990 16808 4367 757 78 12 2. n = 13: 1 2047 59050 262655 390626 277876 117650 33823 6643 882 122 20 2, n = 14: 1 4095 177148 1049599 1953126 1673310 823544 266303 59293 9390 1332 190 14 0, n = 15: 1 8191 531442 4196351 9765626 10058524 5764802 2113663 532171 96906 14642 1988 170 8 4. ...
References
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.
Crossrefs
Formula
T(n, m) = Sum_{ d >= 1, d divides m} (-1)^(m-d)*d^(n-m) = sigma^*_(n-m)(m), n >= 1, m = 1,2, ..., n. For the definition of
sigma^*_(k)(n) see the Hardy reference or a comment in A279395.
O.g.f triangle T: G(z, x) = Sum_{m>=0}
G(m, z)*(x*z)^m, with the column o.g.f. G( m, z) (with offset 0) given in a comment above.
Comments