This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279399 #12 Apr 02 2017 17:10:41 %S A279399 3,5,7,5,7,11,2,7,11,13,3,5,7,11,13,3,7,11,13,17,19,2,5,11,13,17,19,5, %T A279399 7,11,13,17,19,23,3,5,11,13,17,19,23,7,11,13,17,19,23,29,3,5,7,11,13, %U A279399 17,19,23,29,31,2,5,7,13,17,19,23,29,31,2,3,11,13,17,19,23,29,31,5,7,11,13,17,19,23,29,31,2,5,7,11,17,19,23,29,31,37,3,7,11,13,17,19,23,29,31,37 %N A279399 Irregular triangle read by rows. Row n gives the primes of the smallest positive restricted residue system modulo A033949(n). %C A279399 The length of row n is given by A279400(n) %C A279399 For the restricted residue systems modulo n see A038566. For the primes of A038566 (for n >= 3) see A112484. %C A279399 The primes of the restricted residue system modulo the (composite) positive numbers without a primitive root, given in A033949, are of interest for the determination of the Dirichlet characters modulo the A033949 numbers. For prime numbers (A000040) or for composite positive numbers that have prime primitive roots (A279398) the Dirichlet characters are determined from those of the prime primitive root. %F A279399 Row n of T is given by the primes of row A033949(n) of A038566, for n >= 1. %F A279399 T(n, k) = A112484(A033949(n), k), n >= 1, k = 1..A279400(n). %e A279399 The triangle T(n, k) begins (here N = A033949(n)): %e A279399 n, N \ k 1 2 3 4 5 6 7 8 9 10 ... %e A279399 1, 8: 3 5 7 %e A279399 2, 12: 5 7 11 %e A279399 3, 15: 2 7 11 13 %e A279399 4, 16: 3 5 7 11 13 %e A279399 5, 20: 3 7 11 13 17 19 %e A279399 6, 21: 2 5 11 13 17 19 %e A279399 7, 24: 5 7 11 13 17 19 23 %e A279399 8, 28: 3 5 11 13 17 19 23 %e A279399 9, 30: 7 11 13 17 19 23 29 %e A279399 10, 32: 3 5 7 11 13 17 19 23 29 31 %e A279399 11, 33: 2 5 7 13 17 19 23 29 31 %e A279399 12, 35: 2 3 11 13 17 19 23 29 31 %e A279399 13, 36: 5 7 11 13 17 19 23 29 31 %e A279399 14, 39: 2 5 7 11 17 19 23 29 31 37 %e A279399 15, 40: 3 7 11 13 17 19 23 29 31 37 %e A279399 ... %Y A279399 Cf. A000040, A033949, A038566, A112484, A279398, A279400, A279401. %K A279399 nonn,tabf %O A279399 1,1 %A A279399 _Wolfdieter Lang_, Jan 25 2017