This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279401 #7 Jan 30 2017 21:46:57 %S A279401 2,2,2,2,2,2,4,4,2,4,4,4,2,4,4,4,4,2,4,4,2,6,6,6,2,6,6,2,2,2,2,2,2,2, %T A279401 6,6,6,2,6,6,6,4,2,4,4,2,4,2,8,8,4,8,8,2,8,4,8,2,10,10,10,10,10,10,2, %U A279401 10,5,12,12,3,4,12,6,12,2,6,6,6,6,3,2,2,6,6,6,12,4,12,12,6,12,6,6,4,12,4,4,2,4,4,2,4,2,2,4 %N A279401 Irregular triangle read by rows. Row n gives the orders of the primes of row n of the irregular triangle A279399 modulo A033949(n). %C A279401 The length of row n is given by A279400(n). %C A279401 See the A279399 comments. %C A279401 The entries in row n are proper divisors of phi(A033949(n)), where phi(n) = A000010(n). %C A279401 This is because no A033949 number has a primitive root. %F A279401 T(n, k) = order(A279399(n, k)) (mod A033949(n)), n >= 1, k = 1..A279400(n). %e A279401 The irregular triangle T(n, k) begins (here N = A033949(n)): %e A279401 n, N \ k 1 2 3 4 5 6 7 8 9 10 ... %e A279401 1, 8: 2 2 2 %e A279401 2, 12: 2 2 2 %e A279401 3, 15: 4 4 2 4 %e A279401 4, 16: 4 4 2 4 4 %e A279401 5, 20: 4 4 2 4 4 2 %e A279401 6, 21: 6 6 6 2 6 6 %e A279401 7, 24: 2 2 2 2 2 2 2 %e A279401 8, 28: 6 6 6 2 6 6 6 %e A279401 9, 30: 4 2 4 4 2 4 2 %e A279401 10, 32: 8 8 4 8 8 2 8 4 8 2 %e A279401 11, 33: 10 10 10 10 10 10 2 10 5 %e A279401 12, 35: 12 12 3 4 12 6 12 2 6 %e A279401 13, 36: 6 6 6 3 2 2 6 6 6 %e A279401 14, 39: 12 4 12 12 6 12 6 6 4 12 %e A279401 15, 40: 4 4 2 4 4 2 4 2 2 4 %e A279401 ... %e A279401 The sequence of phi(N) begins: 4, 4, 8, 8, 8, 12, 8, 12, 8, 16, 20, 24, 12, 24, 16, ... %e A279401 n = 2, N = 12: 5^2 == 7^2 == 11^2 == 1 (mod 12), therefore 2 is the least positive power k for each of the three primes p of row 2 of A279399 which satisfies p^k == 1 (mod A033949(2)). %Y A279401 Cf. A000010, A033949, A279399, A279400. %K A279401 nonn,tabf %O A279401 1,1 %A A279401 _Wolfdieter Lang_, Jan 30 2017