This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279407 #20 Mar 09 2024 19:20:27 %S A279407 1,2,3,4,5,6,9,8,12,15,18,21,25,28,33,32 %N A279407 Domination number for knight graph on an n X n toroidal board. %C A279407 That is, the minimal number of knights needed to cover an n X n toroidal chessboard so that every square either has a knight on it, or is under attack by a knight, or both. %D A279407 John J. Watkins, Across the Board: The Mathematics of Chessboard Problem, Princeton University Press, 2004, pages 140-144. %H A279407 Andy Huchala, <a href="/A279407/a279407_1.py.txt">Python program</a>. %e A279407 For an 8 X 8 board, the solution is: %e A279407 N . . . . . . N %e A279407 . . . . . . . . %e A279407 . . N . . N . . %e A279407 . . . . . . . . %e A279407 . . . N N . . . %e A279407 . . . . . . . . %e A279407 . N . . . . N . %e A279407 . . . . . . . . %Y A279407 Cf. A006075, A279402. %K A279407 nonn,hard,more %O A279407 1,2 %A A279407 _Andrey Zabolotskiy_, Dec 12 2016 %E A279407 a(9)-a(16) from _Andy Huchala_, Mar 03 2024