This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279431 #19 Dec 23 2024 14:53:45 %S A279431 1,11,20,21,38,39,42,43,45,72,73,74,75,78,79,82,83,86,88,89,140,141, %T A279431 142,143,148,149,150,154,155,158,159,162,163,166,167,169,170,172,173, %U A279431 175,178,180,181,272,273,274,275,276,277,278,284,285,286,287,292,293 %N A279431 Numbers k such that k^2 has an odd number of digits in base 2 and the middle digit is 1. %H A279431 Lars Blomberg, <a href="/A279431/b279431.txt">Table of n, a(n) for n = 1..10000</a> %H A279431 Andrew Weimholt, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2016-December/017140.html">Middle digit in square numbers</a>, Seqfan Mailing list, Dec 12 2016. %e A279431 1^2 = (1), 72^2 = 101000(1)000000, 158^2 = 1100001(1)0000100 %t A279431 a[n_]:=Part[IntegerDigits[n, 2], (Length[IntegerDigits[n, 2]] + 1)/2]; %t A279431 Select[Range[0, 293], OddQ[Length[IntegerDigits[#^2, 2]]] && a[#^2]==1 &] (* _Indranil Ghosh_, Mar 06 2017 *) %o A279431 (PARI) %o A279431 isok(k) = my(d=digits(k^2, 2)); (#d%2 == 1) && (d[#d\2 +1] == 1); %o A279431 for(k=0, 293, if(isok(k)==1, print1(k,", "))); \\ _Indranil Ghosh_, Mar 06 2017 %o A279431 (Python) %o A279431 i=0 %o A279431 j=1 %o A279431 while i<=293: %o A279431 n=str(bin(i**2)[2:]) %o A279431 l=len(n) %o A279431 if l%2 and n[(l-1)//2]=="1": %o A279431 print(str(i), end=",") %o A279431 j+=1 %o A279431 i+=1 # _Indranil Ghosh_, Mar 06 2017 %Y A279431 Cf. A279430. %Y A279431 See A279420-A279429 for a base 10 version. %K A279431 nonn,base,easy %O A279431 1,2 %A A279431 _Lars Blomberg_, Jan 07 2017