This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A279432 #9 Feb 28 2017 09:26:06 %S A279432 0,0,4,0,10,20,0,16,34,48,0,22,44,70,88,0,28,58,88,118,140,0,34,68, %T A279432 102,140,178,204,0,40,82,124,166,208,250,280,0,46,92,142,184,238,284, %U A279432 334,368,0,52,106,156,214,268,318,376,430,468,0,58,116,178,236,290 %N A279432 Triangle read by rows: T(n,k), n>=k>=1, is the number of triangles with integer coordinates that have a bounding box of size n X k. %C A279432 T(n,k) = A279433(n,k) + A280652(n,k) + A280653(n,k). %C A279432 It appears that the main diagonal is 4*A000326. %H A279432 Lars Blomberg, <a href="/A279432/b279432.txt">Table of n, a(n) for n = 1..9870</a> (the first 140 rows) %e A279432 Triangle begins: %e A279432 0 %e A279432 0,4 %e A279432 0,10,20 %e A279432 0,16,34,48 %e A279432 0,22,44,70,88 %e A279432 0,28,58,88,118,140 %e A279432 0,34,68,102,140,178,204 %e A279432 0,40,82,124,166,208,250,280 %e A279432 0,46,92,142,184,238,284,334,368 %e A279432 0,52,106,156,214,268,318,376,430,468 %e A279432 0,58,116,178,236,290,356,418,476,538,580 %e A279432 0,64,130,196,262,328,394,460,526,592,658,704 %e A279432 ----- %e A279432 A right angle is marked 'r', an obtuse one 'o'. %e A279432 For n=2, k=2 %e A279432 rx xr x. .x %e A279432 x. .x rx xr %e A279432 So T(2,2)=4. %e A279432 ----- %e A279432 For n=3, k=2 %e A279432 xo. r.x x.x x.r x.. x.. .ox .r. ..x ..x %e A279432 ..x x.. .r. ..x r.x .ox x.. x.x xo. x.r %e A279432 So T(3,2)=10. %Y A279432 Cf. A045996. %Y A279432 See A279415 for right isosceles triangles. %Y A279432 See A280639 for obtuse isosceles triangles. %Y A279432 See A279418 for acute isosceles triangles. %Y A279432 See A279413 for all isosceles triangles. %Y A279432 See A279433 for all right triangles. %Y A279432 See A280652 for all obtuse triangles. %Y A279432 See A280653 for all acute triangles. %K A279432 nonn,tabl %O A279432 1,3 %A A279432 _Lars Blomberg_, Feb 27 2017